| //! High-level setup and interrupt mapping for the chip. |
| |
| use core::fmt::Write; |
| use core::hint::unreachable_unchecked; |
| use kernel; |
| use kernel::debug; |
| use kernel::hil::time::Alarm; |
| use rv32i::csr::{mcause, mie::mie, mip::mip, mtvec::mtvec, CSR}; |
| use rv32i::syscall::SysCall; |
| use rv32i::PMPConfigMacro; |
| |
| use crate::timer; |
| use crate::uart; |
| use matcha_hal::plic; |
| |
| PMPConfigMacro!(4); |
| |
| pub const CHIP_NAME: &str = "sim_verilator"; |
| pub const CHIP_CPU_FREQ: u32 = 500_000; |
| pub const CHIP_PERIPH_FREQ: u32 = 125_000; |
| pub const CHIP_UART_BPS: u32 = 9600; |
| |
| pub const UART0_TX_WATERMARK: u32 = 1; |
| pub const UART0_RX_PARITY_ERR: u32 = 8; |
| |
| pub struct Matcha<A: 'static + Alarm<'static>> { |
| userspace_kernel_boundary: SysCall, |
| pmp: PMP, |
| scheduler_timer: kernel::VirtualSchedulerTimer<A>, |
| } |
| |
| impl<A: 'static + Alarm<'static>> Matcha<A> { |
| pub unsafe fn new(alarm: &'static A) -> Self { |
| Self { |
| userspace_kernel_boundary: SysCall::new(), |
| pmp: PMP::new(), |
| scheduler_timer: kernel::VirtualSchedulerTimer::new(alarm), |
| } |
| } |
| |
| pub unsafe fn enable_plic_interrupts(&self) { |
| plic::disable_all(); |
| plic::clear_all_pending(); |
| plic::enable_all(); |
| } |
| |
| unsafe fn handle_plic_interrupts(&self) { |
| while let Some(interrupt) = plic::next_pending() { |
| match interrupt { |
| UART0_TX_WATERMARK..=UART0_RX_PARITY_ERR => uart::UART0.handle_interrupt(), |
| _ => debug!("Pidx {}", interrupt), |
| } |
| plic::complete(interrupt); |
| } |
| } |
| } |
| |
| impl<A: 'static + Alarm<'static>> kernel::Chip for Matcha<A> { |
| type MPU = PMP; |
| type UserspaceKernelBoundary = SysCall; |
| type SchedulerTimer = kernel::VirtualSchedulerTimer<A>; |
| type WatchDog = (); |
| |
| fn mpu(&self) -> &Self::MPU { |
| &self.pmp |
| } |
| |
| fn scheduler_timer(&self) -> &Self::SchedulerTimer { |
| &self.scheduler_timer |
| } |
| |
| fn watchdog(&self) -> &Self::WatchDog { |
| &() |
| } |
| |
| fn userspace_kernel_boundary(&self) -> &SysCall { |
| &self.userspace_kernel_boundary |
| } |
| |
| fn service_pending_interrupts(&self) { |
| loop { |
| let mip = CSR.mip.extract(); |
| |
| if mip.is_set(mip::mtimer) { |
| unsafe { |
| timer::TIMER.service_interrupt(); |
| } |
| } |
| if mip.is_set(mip::mext) { |
| unsafe { |
| self.handle_plic_interrupts(); |
| } |
| } |
| |
| if !mip.matches_any(mip::mext::SET + mip::mtimer::SET) { |
| break; |
| } |
| } |
| |
| // Re-enable all MIE interrupts that we care about. Since we looped |
| // until we handled them all, we can re-enable all of them. |
| CSR.mie.modify(mie::mext::SET + mie::mtimer::SET); |
| } |
| |
| fn has_pending_interrupts(&self) -> bool { |
| let mip = CSR.mip.extract(); |
| mip.matches_any(mip::mext::SET + mip::mtimer::SET) |
| } |
| |
| fn sleep(&self) { |
| unsafe { |
| //pwrmgr::PWRMGR.enable_low_power(); |
| //self.check_until_true_or_interrupt(|| pwrmgr::PWRMGR.check_clock_propagation(), None); |
| rv32i::support::wfi(); |
| } |
| } |
| |
| unsafe fn atomic<F, R>(&self, f: F) -> R |
| where |
| F: FnOnce() -> R, |
| { |
| rv32i::support::atomic(f) |
| } |
| |
| unsafe fn print_state(&self, writer: &mut dyn Write) { |
| let _ = writer.write_fmt(format_args!( |
| "\r\n---| Matcha configuration for {} |---", |
| crate::chip::CHIP_NAME |
| )); |
| rv32i::print_riscv_state(writer); |
| } |
| } |
| |
| fn handle_exception(exception: mcause::Exception) { |
| match exception { |
| mcause::Exception::UserEnvCall | mcause::Exception::SupervisorEnvCall => (), |
| |
| mcause::Exception::InstructionMisaligned |
| | mcause::Exception::InstructionFault |
| | mcause::Exception::IllegalInstruction |
| | mcause::Exception::Breakpoint |
| | mcause::Exception::LoadMisaligned |
| | mcause::Exception::LoadFault |
| | mcause::Exception::StoreMisaligned |
| | mcause::Exception::StoreFault |
| | mcause::Exception::MachineEnvCall |
| | mcause::Exception::InstructionPageFault |
| | mcause::Exception::LoadPageFault |
| | mcause::Exception::StorePageFault |
| | mcause::Exception::Unknown => { |
| panic!("fatal exception"); |
| } |
| } |
| } |
| |
| unsafe fn handle_interrupt(intr: mcause::Interrupt) { |
| match intr { |
| mcause::Interrupt::UserSoft |
| | mcause::Interrupt::UserTimer |
| | mcause::Interrupt::UserExternal => { |
| panic!("unexpected user-mode interrupt"); |
| } |
| mcause::Interrupt::SupervisorExternal |
| | mcause::Interrupt::SupervisorTimer |
| | mcause::Interrupt::SupervisorSoft => { |
| panic!("unexpected supervisor-mode interrupt"); |
| } |
| |
| mcause::Interrupt::MachineSoft => { |
| CSR.mie.modify(mie::msoft::CLEAR); |
| } |
| mcause::Interrupt::MachineTimer => { |
| CSR.mie.modify(mie::mtimer::CLEAR); |
| } |
| mcause::Interrupt::MachineExternal => { |
| CSR.mie.modify(mie::mext::CLEAR); |
| } |
| |
| mcause::Interrupt::Unknown => { |
| panic!("interrupt of unknown cause"); |
| } |
| } |
| } |
| |
| /// Trap handler for board/chip specific code. |
| /// |
| /// For the Ibex this gets called when an interrupt occurs while the chip is |
| /// in kernel mode. All we need to do is check which interrupt occurred and |
| /// disable it. |
| #[export_name = "_start_trap_rust"] |
| pub unsafe extern "C" fn start_trap_rust() { |
| match mcause::Trap::from(CSR.mcause.extract()) { |
| mcause::Trap::Interrupt(interrupt) => { |
| handle_interrupt(interrupt); |
| } |
| mcause::Trap::Exception(exception) => { |
| handle_exception(exception); |
| } |
| } |
| } |
| |
| /// Function that gets called if an interrupt occurs while an app was running. |
| /// mcause is passed in, and this function should correctly handle disabling the |
| /// interrupt that fired so that it does not trigger again. |
| #[export_name = "_disable_interrupt_trap_handler"] |
| pub unsafe extern "C" fn disable_interrupt_trap_handler(mcause_val: u32) { |
| match mcause::Trap::from(mcause_val) { |
| mcause::Trap::Interrupt(interrupt) => { |
| handle_interrupt(interrupt); |
| } |
| _ => { |
| panic!("unexpected non-interrupt\n"); |
| } |
| } |
| } |
| |
| pub unsafe fn configure_trap_handler() { |
| // The Ibex CPU does not support non-vectored trap entries. |
| CSR.mtvec |
| .write(mtvec::trap_addr.val(_start_trap_vectored as u32 >> 2) + mtvec::mode::Vectored) |
| } |
| |
| // Mock implementation for crate tests that does not include the section |
| // specifier, as the test will not use our linker script, and the host |
| // compilation environment may not allow the section name. |
| #[cfg(not(any(target_arch = "riscv32", target_os = "none")))] |
| pub extern "C" fn _start_trap_vectored() { |
| unsafe { |
| unreachable_unchecked(); |
| } |
| } |
| |
| #[cfg(all(target_arch = "riscv32", target_os = "none"))] |
| #[link_section = ".riscv.trap_vectored"] |
| #[export_name = "_start_trap_vectored"] |
| #[naked] |
| pub extern "C" fn _start_trap_vectored() -> ! { |
| unsafe { |
| // According to the Ibex user manual: |
| // [NMI] has interrupt ID 31, i.e., it has the highest priority of all |
| // interrupts and the core jumps to the trap-handler base address (in |
| // mtvec) plus 0x7C to handle the NMI. |
| // |
| // Below are 32 (non-compressed) jumps to cover the entire possible |
| // range of vectored traps. |
| #[cfg(all(target_arch = "riscv32", target_os = "none"))] |
| llvm_asm!(" |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| j _start_trap |
| " |
| : |
| : |
| : |
| : "volatile"); |
| unreachable_unchecked() |
| } |
| } |