blob: e03a396d6f50976e0eff95819cc730fa9c22d269 [file] [log] [blame] [edit]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/lib/dif/dif_base.h"
#include "sw/device/lib/dif/dif_clkmgr.h"
#include "sw/device/lib/dif/dif_otbn.h"
#include "sw/device/lib/runtime/ibex.h"
#include "sw/device/lib/runtime/irq.h"
#include "sw/device/lib/runtime/log.h"
#include "sw/device/lib/testing/clkmgr_testutils.h"
#include "sw/device/lib/testing/entropy_testutils.h"
#include "sw/device/lib/testing/otbn_testutils.h"
#include "sw/device/lib/testing/rv_plic_testutils.h"
#include "sw/device/lib/testing/test_framework/check.h"
#include "sw/device/lib/testing/test_framework/ottf_main.h"
#include "sw/device/tests/otbn_randomness_impl.h"
#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h"
OTTF_DEFINE_TEST_CONFIG();
static dif_clkmgr_t clkmgr;
static const dif_clkmgr_hintable_clock_t kOtbnClock =
kTopEarlgreyHintableClocksMainOtbn;
static dif_rv_plic_t plic;
static dif_otbn_t otbn;
/**
* These variables are used for ISR communication hence they are volatile.
*/
static volatile top_earlgrey_plic_peripheral_t plic_peripheral;
static volatile dif_rv_plic_irq_id_t irq_id;
static volatile dif_otbn_irq_t irq;
/**
* Provides external IRQ handling for otbn tests.
*
* This function overrides the default OTTF external ISR.
*
* It performs the following:
* 1. Claims the IRQ fired (finds PLIC IRQ index).
* 2. Compute the OTBN peripheral.
* 3. Compute the otbn irq.
* 4. Clears the IRQ at the peripheral.
* 5. Completes the IRQ service at PLIC.
*/
void ottf_external_isr(void) {
CHECK_DIF_OK(dif_rv_plic_irq_claim(&plic, kTopEarlgreyPlicTargetIbex0,
(dif_rv_plic_irq_id_t *)&irq_id));
plic_peripheral = (top_earlgrey_plic_peripheral_t)
top_earlgrey_plic_interrupt_for_peripheral[irq_id];
irq = (dif_otbn_irq_t)(irq_id -
(dif_rv_plic_irq_id_t)kTopEarlgreyPlicIrqIdOtbnDone);
// Otbn clock is disabled, so we can not acknowledge the irq. Disabling it to
// avoid an infinite loop here.
irq_global_ctrl(false);
irq_external_ctrl(false);
// Complete the IRQ by writing the IRQ source to the Ibex register.
CHECK_DIF_OK(
dif_rv_plic_irq_complete(&plic, kTopEarlgreyPlicTargetIbex0, irq_id));
}
static void otbn_wait_for_done_irq(dif_otbn_t *otbn) {
// Clear the otbn irq variable: we'll set it in the interrupt handler when
// we see the Done interrupt fire.
irq = UINT32_MAX;
irq_id = UINT32_MAX;
plic_peripheral = UINT32_MAX;
CHECK_DIF_OK(
dif_otbn_irq_set_enabled(otbn, kDifOtbnIrqDone, kDifToggleEnabled));
// OTBN should be running. Wait for an interrupt that says
// it's done.
while (true) {
// This looks a bit odd, but is needed to avoid a race condition where the
// OTBN interrupt comes in after we load the otbn_finished flag but before
// we run the WFI instruction. The trick is that WFI returns when an
// interrupt comes in even if interrupts are globally disabled, which means
// that the WFI can actually sit *inside* the critical section.
irq_global_ctrl(false);
if (plic_peripheral != UINT32_MAX) {
break;
}
wait_for_interrupt();
irq_global_ctrl(true);
}
CHECK(plic_peripheral == kTopEarlgreyPlicPeripheralOtbn,
"Interrupt from incorrect peripheral: (exp: %d, obs: %s)",
kTopEarlgreyPlicPeripheralOtbn, plic_peripheral);
// Check this is the interrupt we expected.
CHECK(irq_id == kTopEarlgreyPlicIrqIdOtbnDone);
}
static void otbn_init_irq(void) {
mmio_region_t plic_base_addr =
mmio_region_from_addr(TOP_EARLGREY_RV_PLIC_BASE_ADDR);
CHECK_DIF_OK(dif_rv_plic_init(plic_base_addr, &plic));
// Set interrupt priority to be positive.
dif_rv_plic_irq_id_t irq_id = kTopEarlgreyPlicIrqIdOtbnDone;
CHECK_DIF_OK(dif_rv_plic_irq_set_priority(&plic, irq_id, 0x1));
CHECK_DIF_OK(dif_rv_plic_irq_set_enabled(
&plic, irq_id, kTopEarlgreyPlicTargetIbex0, kDifToggleEnabled));
CHECK_DIF_OK(dif_rv_plic_target_set_threshold(
&plic, kTopEarlgreyPlicTargetIbex0, 0x0));
irq_global_ctrl(true);
irq_external_ctrl(true);
}
void initialize_clkmgr(void) {
mmio_region_t addr = mmio_region_from_addr(TOP_EARLGREY_CLKMGR_AON_BASE_ADDR);
CHECK_DIF_OK(dif_clkmgr_init(addr, &clkmgr));
// Get initial hint and enable for OTBN clock and check both are enabled.
dif_toggle_t clock_hint_state;
CHECK_DIF_OK(dif_clkmgr_hintable_clock_get_hint(&clkmgr, kOtbnClock,
&clock_hint_state));
CHECK(clock_hint_state == kDifToggleEnabled);
CLKMGR_TESTUTILS_CHECK_CLOCK_HINT(clkmgr, kOtbnClock, kDifToggleEnabled);
}
bool test_main(void) {
// Initialize EDN in auto mode.
entropy_testutils_auto_mode_init();
initialize_clkmgr();
mmio_region_t addr = mmio_region_from_addr(TOP_EARLGREY_OTBN_BASE_ADDR);
CHECK_DIF_OK(dif_otbn_init(addr, &otbn));
otbn_init_irq();
// Write the OTBN clk hint to 0 within clkmgr to indicate OTBN clk can be
// gated and verify that the OTBN clk hint status within clkmgr reads 0 (OTBN
// is idle).
CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT(
clkmgr, kOtbnClock, kDifToggleDisabled, kDifToggleDisabled);
// Write the OTBN clk hint to 1 within clkmgr to indicate OTBN clk can be
// enabled.
CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT(
clkmgr, kOtbnClock, kDifToggleEnabled, kDifToggleEnabled);
// Start an OTBN operation, write the OTBN clk hint to 0 within clkmgr and
// verify that the OTBN clk hint status within clkmgr reads 1 (OTBN is not
// idle).
otbn_randomness_test_start(&otbn);
CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT(
clkmgr, kOtbnClock, kDifToggleDisabled, kDifToggleEnabled);
// After the OTBN operation is complete, verify that the OTBN clk hint status
// within clkmgr now reads 0 again (OTBN is idle).
otbn_wait_for_done_irq(&otbn);
CLKMGR_TESTUTILS_CHECK_CLOCK_HINT(clkmgr, kOtbnClock, kDifToggleDisabled);
// Write the OTBN clk hint to 1, read and check the OTBN output for
// correctness.
CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT(
clkmgr, kOtbnClock, kDifToggleEnabled, kDifToggleEnabled);
otbn_randomness_test_log_results(&otbn);
// Check for successful test execution (self-reported).
return otbn_randomness_test_end(&otbn, /*skip_otbn_done_check=*/true);
}