| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // AES main control FSM |
| // |
| // This module contains the main control FSM handling the interplay of input/output registers and |
| // the AES cipher core. |
| |
| `include "prim_assert.sv" |
| |
| module aes_control_fsm |
| import aes_pkg::*; |
| import aes_reg_pkg::*; |
| #( |
| parameter bit SecMasking = 0 |
| ) ( |
| input logic clk_i, |
| input logic rst_ni, |
| |
| // Main control signals |
| input logic ctrl_qe_i, |
| output logic ctrl_we_o, |
| input logic ctrl_phase_i, |
| input logic ctrl_err_storage_i, |
| input aes_op_e op_i, |
| input aes_mode_e mode_i, |
| input ciph_op_e cipher_op_i, |
| input logic sideload_i, |
| input prs_rate_e prng_reseed_rate_i, |
| input logic manual_operation_i, |
| input logic key_touch_forces_reseed_i, |
| input logic start_i, |
| input logic key_iv_data_in_clear_i, |
| input logic data_out_clear_i, |
| input logic prng_reseed_i, |
| input logic mux_sel_err_i, |
| input logic sp_enc_err_i, |
| input lc_ctrl_pkg::lc_tx_t lc_escalate_en_i, |
| input logic alert_fatal_i, |
| output logic alert_o, |
| |
| // I/O register read/write enables |
| input logic key_sideload_valid_i, |
| input logic [NumSharesKey-1:0][NumRegsKey-1:0] key_init_qe_i, |
| input logic [NumRegsIv-1:0] iv_qe_i, |
| input logic [NumRegsData-1:0] data_in_qe_i, |
| input logic [NumRegsData-1:0] data_out_re_i, |
| output logic data_in_we_o, |
| output logic data_out_we_o, // Sparsify |
| |
| // Previous input data register |
| output dip_sel_e data_in_prev_sel_o, |
| output logic data_in_prev_we_o, // Sparsify |
| |
| // Cipher I/O muxes |
| output si_sel_e state_in_sel_o, |
| output add_si_sel_e add_state_in_sel_o, |
| output add_so_sel_e add_state_out_sel_o, |
| |
| // Counter |
| output logic ctr_incr_o, // Sparsify |
| input logic ctr_ready_i, // Sparsify |
| input logic [NumSlicesCtr-1:0] ctr_we_i, // Sparsify |
| |
| // Cipher core control and sync |
| output logic cipher_in_valid_o, // Sparsify |
| input logic cipher_in_ready_i, // Sparsify |
| input logic cipher_out_valid_i, // Sparsify |
| output logic cipher_out_ready_o, // Sparsify |
| output logic cipher_crypt_o, // Sparsify |
| input logic cipher_crypt_i, // Sparsify |
| output logic cipher_dec_key_gen_o, // Sparsify |
| input logic cipher_dec_key_gen_i, // Sparsify |
| output logic cipher_prng_reseed_o, |
| input logic cipher_prng_reseed_i, |
| output logic cipher_key_clear_o, |
| input logic cipher_key_clear_i, |
| output logic cipher_data_out_clear_o, |
| input logic cipher_data_out_clear_i, |
| |
| // Initial key registers |
| output key_init_sel_e key_init_sel_o, |
| output logic [NumSharesKey-1:0][NumRegsKey-1:0] key_init_we_o, // Sparsify |
| |
| // IV registers |
| output iv_sel_e iv_sel_o, |
| output logic [NumSlicesCtr-1:0] iv_we_o, // Sparsify |
| |
| // Pseudo-random number generator interface |
| output logic prng_data_req_o, |
| input logic prng_data_ack_i, |
| output logic prng_reseed_req_o, |
| input logic prng_reseed_ack_i, |
| |
| // Trigger register |
| output logic start_we_o, |
| output logic key_iv_data_in_clear_we_o, |
| output logic data_out_clear_we_o, |
| output logic prng_reseed_o, |
| output logic prng_reseed_we_o, |
| |
| // Status register |
| output logic idle_o, |
| output logic idle_we_o, |
| output logic stall_o, |
| output logic stall_we_o, |
| input logic output_lost_i, |
| output logic output_lost_o, |
| output logic output_lost_we_o, |
| output logic output_valid_o, |
| output logic output_valid_we_o, |
| output logic input_ready_o, |
| output logic input_ready_we_o |
| ); |
| |
| // Signals |
| aes_ctrl_e aes_ctrl_ns, aes_ctrl_cs; |
| logic prng_reseed_done_d, prng_reseed_done_q; |
| |
| logic key_init_clear; |
| logic key_init_new; |
| logic key_init_new_pulse; |
| logic key_init_load; |
| logic key_init_arm; |
| logic key_init_ready; |
| logic key_sideload; |
| |
| logic [NumSlicesCtr-1:0] iv_qe; |
| logic iv_clear; |
| logic iv_load; |
| logic iv_arm; |
| logic iv_ready; |
| |
| logic [NumRegsData-1:0] data_in_new_d, data_in_new_q; |
| logic data_in_new; |
| logic data_in_load; |
| |
| logic [NumRegsData-1:0] data_out_read_d, data_out_read_q; |
| logic data_out_read; |
| logic output_valid_q; |
| |
| logic cfg_valid; |
| logic no_alert; |
| logic cipher_op_err; |
| logic start_common, start_ecb, start_cbc, start_cfb, start_ofb, start_ctr; |
| logic start; |
| logic start_core; |
| logic finish; |
| logic crypt; |
| logic cipher_out_done; |
| logic doing_cbc_enc, doing_cbc_dec; |
| logic doing_cfb_enc, doing_cfb_dec; |
| logic doing_ofb; |
| logic doing_ctr; |
| logic ctrl_we_q; |
| logic clear_in_out_status; |
| logic clear_on_fatal; |
| |
| logic start_we; |
| logic key_iv_data_in_clear_we; |
| logic data_out_clear_we; |
| logic prng_reseed_we; |
| |
| logic idle; |
| logic idle_we; |
| logic stall; |
| logic stall_we; |
| logic output_lost; |
| logic output_lost_we; |
| logic output_valid; |
| logic output_valid_we; |
| logic input_ready; |
| logic input_ready_we; |
| |
| logic block_ctr_expr; |
| logic block_ctr_decr; |
| |
| // Software updates IV in chunks of 32 bits, the counter updates SliceSizeCtr bits at a time. |
| // Convert word write enable to internal half-word write enable. |
| assign iv_qe = {iv_qe_i[3], iv_qe_i[3], iv_qe_i[2], iv_qe_i[2], |
| iv_qe_i[1], iv_qe_i[1], iv_qe_i[0], iv_qe_i[0]}; |
| |
| // The cipher core is only ever allowed to start or finish if the control register holds a valid |
| // configuration and if no fatal alert condition occured. |
| assign cfg_valid = ~((mode_i == AES_NONE) | ctrl_err_storage_i); |
| assign no_alert = ~alert_fatal_i; |
| |
| // cipher_op_i is obtained from the configuration of the control register with additional logic. |
| assign cipher_op_err = ~(cipher_op_i == CIPH_FWD || cipher_op_i == CIPH_INV); |
| |
| // Check common start conditions. These are needed for any mode, unless we are running in |
| // manual mode. |
| assign start_common = key_init_ready & data_in_new & |
| // If key sideload is enabled, we only start if the key is valid. |
| (sideload_i ? key_sideload_valid_i : 1'b1); |
| |
| // Check mode-specific start conditions. If the IV (and counter) is needed, we only start if |
| // also the IV (and counter) is ready. |
| assign start_ecb = (mode_i == AES_ECB); |
| assign start_cbc = (mode_i == AES_CBC) & iv_ready; |
| assign start_cfb = (mode_i == AES_CFB) & iv_ready; |
| assign start_ofb = (mode_i == AES_OFB) & iv_ready; |
| assign start_ctr = (mode_i == AES_CTR) & iv_ready & ctr_ready_i; |
| |
| // If set to start manually, we just wait for the trigger. Otherwise, check common as well as |
| // mode-specific start conditions. |
| assign start = cfg_valid & no_alert & |
| // Manual operation has priority. |
| (manual_operation_i ? start_i : |
| // Check start conditions for automatic operation. |
| ((start_ecb | |
| start_cbc | |
| start_cfb | |
| start_ofb | |
| start_ctr) & start_common)); |
| |
| // If not set to overwrite data, we wait for any previous output data to be read. data_out_read |
| // synchronously clears output_valid_q, unless new output data is written in the exact same |
| // clock cycle. |
| assign finish = cfg_valid & no_alert & |
| // Manual operation has priority. |
| (manual_operation_i ? 1'b1 : |
| // Make sure previous output data has been read. |
| (~output_valid_q | data_out_read)); |
| |
| // Helper signals for FSM |
| assign crypt = cipher_crypt_o | cipher_crypt_i; |
| |
| assign doing_cbc_enc = (mode_i == AES_CBC && op_i == AES_ENC) & crypt; |
| assign doing_cbc_dec = (mode_i == AES_CBC && op_i == AES_DEC) & crypt; |
| assign doing_cfb_enc = (mode_i == AES_CFB && op_i == AES_ENC) & crypt; |
| assign doing_cfb_dec = (mode_i == AES_CFB && op_i == AES_DEC) & crypt; |
| assign doing_ofb = (mode_i == AES_OFB) & crypt; |
| assign doing_ctr = (mode_i == AES_CTR) & crypt; |
| |
| // FSM |
| always_comb begin : aes_ctrl_fsm |
| |
| // Previous input data register control |
| data_in_prev_sel_o = DIP_CLEAR; |
| data_in_prev_we_o = 1'b0; |
| |
| // Cipher I/O mux control |
| state_in_sel_o = SI_DATA; |
| add_state_in_sel_o = ADD_SI_ZERO; |
| add_state_out_sel_o = ADD_SO_ZERO; |
| |
| // Counter control |
| ctr_incr_o = 1'b0; |
| |
| // Cipher core control |
| cipher_in_valid_o = 1'b0; |
| cipher_out_ready_o = 1'b0; |
| cipher_out_done = 1'b0; |
| cipher_crypt_o = 1'b0; |
| cipher_dec_key_gen_o = 1'b0; |
| cipher_prng_reseed_o = 1'b0; |
| cipher_key_clear_o = 1'b0; |
| cipher_data_out_clear_o = 1'b0; |
| |
| // Initial key registers |
| key_init_sel_o = sideload_i ? KEY_INIT_KEYMGR : KEY_INIT_INPUT; |
| key_init_we_o = {NumSharesKey * NumRegsKey{1'b0}}; |
| |
| // IV registers |
| iv_sel_o = IV_INPUT; |
| iv_we_o = {NumSlicesCtr{1'b0}}; |
| |
| // Control register |
| ctrl_we_o = 1'b0; |
| |
| // Alert |
| alert_o = 1'b0; |
| |
| // Pseudo-random number generator control |
| prng_data_req_o = 1'b0; |
| prng_reseed_req_o = 1'b0; |
| |
| // Trigger register control |
| start_we = 1'b0; |
| key_iv_data_in_clear_we = 1'b0; |
| data_out_clear_we = 1'b0; |
| prng_reseed_we = 1'b0; |
| |
| // Status register |
| idle = 1'b0; |
| idle_we = 1'b0; |
| stall = 1'b0; |
| stall_we = 1'b0; |
| |
| // Key, data I/O register control |
| data_in_load = 1'b0; |
| data_in_we_o = 1'b0; |
| data_out_we_o = 1'b0; |
| |
| // Register status tracker control |
| key_init_clear = 1'b0; |
| key_init_load = 1'b0; |
| key_init_arm = 1'b0; |
| iv_clear = 1'b0; |
| iv_load = 1'b0; |
| iv_arm = 1'b0; |
| |
| // Block counter |
| block_ctr_decr = 1'b0; |
| |
| // FSM |
| aes_ctrl_ns = aes_ctrl_cs; |
| start_core = 1'b0; |
| prng_reseed_done_d = prng_reseed_done_q | prng_reseed_ack_i; |
| |
| unique case (aes_ctrl_cs) |
| |
| CTRL_IDLE: begin |
| // The core is about to start encryption/decryption or another action. |
| start_core = start | key_iv_data_in_clear_i | data_out_clear_i | prng_reseed_i; |
| |
| // Update status register. A write to the main control register (if sideload is enabled) |
| // or writing the last key register can initiate a PRNG reseed operation via trigger |
| // register. To avoid that subsequent writes to the main control, key or IV registers |
| // collide with the start of the reseed operation, de-assert the idle bit. |
| idle = ~(start_core | (prng_reseed_o & prng_reseed_we_o)); |
| idle_we = 1'b1; |
| |
| // Clear the start trigger when seeing invalid configurations or performing automatic |
| // operation. |
| start_we = start_i & ((mode_i == AES_NONE) | ~manual_operation_i); |
| |
| if (!start_core) begin |
| // Initial key and IV updates are ignored if the core is about to start. If key sideload |
| // is enabled, software writes to the initial key registers are ignored. |
| key_init_we_o = sideload_i ? {NumSharesKey * NumRegsKey{key_sideload}} : key_init_qe_i; |
| iv_we_o = iv_qe; |
| |
| // Updates to the control register are only allowed if the core is not about to start and |
| // there isn't a storage error. A storage error is unrecoverable and requires a reset. |
| ctrl_we_o = !ctrl_err_storage_i ? ctrl_qe_i : 1'b0; |
| |
| // Control register updates clear all register status trackers. |
| key_init_clear = ctrl_we_o; |
| iv_clear = ctrl_we_o; |
| end |
| |
| if (prng_reseed_i) begin |
| // PRNG reseeding has highest priority. |
| if (!SecMasking) begin |
| prng_reseed_done_d = 1'b0; |
| aes_ctrl_ns = CTRL_PRNG_RESEED; |
| end else begin |
| // In case masking is enabled, also the masking PRNG inside the cipher core needs to |
| // be reseeded. |
| cipher_prng_reseed_o = 1'b1; |
| |
| // Perform handshake. |
| cipher_in_valid_o = 1'b1; |
| if (cipher_in_ready_i) begin |
| prng_reseed_done_d = 1'b0; |
| aes_ctrl_ns = CTRL_PRNG_RESEED; |
| end |
| end |
| |
| end else if (key_iv_data_in_clear_i || data_out_clear_i) begin |
| // To clear registers, we must first request fresh pseudo-random data. |
| aes_ctrl_ns = CTRL_PRNG_UPDATE; |
| |
| end else if (start) begin |
| // Signal that we want to start encryption/decryption. |
| cipher_crypt_o = 1'b1; |
| |
| // Signal if the cipher core shall reseed the masking PRNG. |
| cipher_prng_reseed_o = block_ctr_expr; |
| |
| // We got a new initial key, but want to do decryption. The cipher core must first |
| // generate the start key for decryption. |
| cipher_dec_key_gen_o = (cipher_op_i == CIPH_INV) ? key_init_new : 1'b0; |
| |
| // Previous input data register control |
| data_in_prev_sel_o = doing_cbc_dec ? DIP_DATA_IN : |
| doing_cfb_enc ? DIP_DATA_IN : |
| doing_cfb_dec ? DIP_DATA_IN : |
| doing_ofb ? DIP_DATA_IN : |
| doing_ctr ? DIP_DATA_IN : DIP_CLEAR; |
| data_in_prev_we_o = doing_cbc_dec | |
| doing_cfb_enc | |
| doing_cfb_dec | |
| doing_ofb | |
| doing_ctr; |
| |
| // State input mux control |
| state_in_sel_o = doing_cfb_enc ? SI_ZERO : |
| doing_cfb_dec ? SI_ZERO : |
| doing_ofb ? SI_ZERO : |
| doing_ctr ? SI_ZERO : SI_DATA; |
| |
| // State input additon mux control |
| add_state_in_sel_o = doing_cbc_enc ? ADD_SI_IV : |
| doing_cfb_enc ? ADD_SI_IV : |
| doing_cfb_dec ? ADD_SI_IV : |
| doing_ofb ? ADD_SI_IV : |
| doing_ctr ? ADD_SI_IV : ADD_SI_ZERO; |
| |
| // We have work for the cipher core, perform handshake. |
| cipher_in_valid_o = 1'b1; |
| if (cipher_in_ready_i) begin |
| // Do not yet clear a possible start trigger if we are just starting the generation of |
| // the start key for decryption. |
| start_we = ~cipher_dec_key_gen_o; |
| aes_ctrl_ns = CTRL_LOAD; |
| end |
| end |
| end |
| |
| CTRL_LOAD: begin |
| // Signal that we have used the current key, IV, data input to register status tracking. |
| key_init_load = cipher_dec_key_gen_i; // This key is no longer "new", but still clean. |
| key_init_arm = ~cipher_dec_key_gen_i; // The key is still "new", prevent partial updates. |
| iv_load = ~cipher_dec_key_gen_i & (doing_cbc_enc | |
| doing_cbc_dec | |
| doing_cfb_enc | |
| doing_cfb_dec | |
| doing_ofb | |
| doing_ctr); |
| data_in_load = ~cipher_dec_key_gen_i; |
| |
| // Trigger counter increment. |
| ctr_incr_o = doing_ctr; |
| |
| // Unless we are just generating the start key for decryption, we must update the PRNG. |
| aes_ctrl_ns = !cipher_dec_key_gen_i ? CTRL_PRNG_UPDATE : CTRL_FINISH; |
| end |
| |
| CTRL_PRNG_UPDATE: begin |
| // Fresh pseudo-random data is used to: |
| // - clear the state in the final cipher round, |
| // - clear any other registers in the CLEAR_I/CO states. |
| |
| // IV control in case of ongoing encryption/decryption |
| // - CTR: IV registers are updated by counter during cipher operation |
| iv_sel_o = doing_ctr ? IV_CTR : IV_INPUT; |
| iv_we_o = doing_ctr ? ctr_we_i : {NumSlicesCtr{1'b0}}; |
| |
| // Request fresh pseudo-random data, perform handshake. |
| prng_data_req_o = 1'b1; |
| if (prng_data_ack_i) begin |
| |
| // Ongoing encryption/decryption operations have the highest priority. The clear triggers |
| // might have become asserted after the handshake with the cipher core. |
| if (cipher_crypt_i) begin |
| aes_ctrl_ns = CTRL_FINISH; |
| |
| end else if (key_iv_data_in_clear_i || data_out_clear_i) begin |
| // To clear the output data registers, we re-use the muxing resources of the cipher |
| // core. To clear all key material, some key registers inside the cipher core need to |
| // be cleared. |
| cipher_key_clear_o = key_iv_data_in_clear_i; |
| cipher_data_out_clear_o = data_out_clear_i; |
| |
| // We have work for the cipher core, perform handshake. |
| cipher_in_valid_o = 1'b1; |
| if (cipher_in_ready_i) begin |
| aes_ctrl_ns = CTRL_CLEAR_I; |
| end |
| end else begin |
| // Another write to the trigger register must have overwritten the trigger bits that |
| // actually caused us to enter this state. Just return. |
| aes_ctrl_ns = CTRL_IDLE; |
| end // cipher_crypt_i |
| end // prng_data_ack_i |
| end |
| |
| CTRL_PRNG_RESEED: begin |
| // Request a reseed of the clearing PRNG. |
| prng_reseed_req_o = ~prng_reseed_done_q; |
| |
| if (!SecMasking) begin |
| if (prng_reseed_done_q) begin |
| // Clear the trigger and return. |
| prng_reseed_we = 1'b1; |
| prng_reseed_done_d = 1'b0; |
| aes_ctrl_ns = CTRL_IDLE; |
| end |
| |
| end else begin |
| // In case masking is used, we must also wait for the cipher core to reseed the internal |
| // masking PRNG. Perform handshake. |
| cipher_out_ready_o = prng_reseed_done_q; |
| if (cipher_out_ready_o && cipher_out_valid_i) begin |
| // Clear the trigger and return. |
| prng_reseed_we = 1'b1; |
| prng_reseed_done_d = 1'b0; |
| aes_ctrl_ns = CTRL_IDLE; |
| end |
| end |
| end |
| |
| CTRL_FINISH: begin |
| // Wait for cipher core to finish. |
| |
| if (cipher_dec_key_gen_i) begin |
| // We are ready. |
| cipher_out_ready_o = 1'b1; |
| if (cipher_out_valid_i) begin |
| block_ctr_decr = 1'b1; |
| aes_ctrl_ns = CTRL_IDLE; |
| end |
| end else begin |
| // Handshake signals: We are ready once the output data registers can be written. Don't |
| // let data propagate in case of mux selector or sparsely encoded signals taking on |
| // invalid values. |
| cipher_out_ready_o = finish; |
| cipher_out_done = finish & cipher_out_valid_i & |
| ~mux_sel_err_i & ~sp_enc_err_i & ~cipher_op_err; |
| |
| // Signal if the cipher core is stalled (because previous output has not yet been read). |
| stall = ~finish & cipher_out_valid_i; |
| stall_we = 1'b1; |
| |
| // State out addition mux control |
| add_state_out_sel_o = doing_cbc_dec ? ADD_SO_IV : |
| doing_cfb_enc ? ADD_SO_DIP : |
| doing_cfb_dec ? ADD_SO_DIP : |
| doing_ofb ? ADD_SO_DIP : |
| doing_ctr ? ADD_SO_DIP : ADD_SO_ZERO; |
| |
| // IV control |
| // - CBC/CFB/OFB: IV registers are only updated when cipher finishes. |
| // - CTR: IV registers are updated by counter during cipher operation. |
| iv_sel_o = doing_cbc_enc ? IV_DATA_OUT : |
| doing_cbc_dec ? IV_DATA_IN_PREV : |
| doing_cfb_enc ? IV_DATA_OUT : |
| doing_cfb_dec ? IV_DATA_IN_PREV : |
| doing_ofb ? IV_DATA_OUT_RAW : |
| doing_ctr ? IV_CTR : IV_INPUT; |
| iv_we_o = doing_cbc_enc || |
| doing_cbc_dec || |
| doing_cfb_enc || |
| doing_cfb_dec || |
| doing_ofb ? {NumSlicesCtr{cipher_out_done}} : |
| doing_ctr ? ctr_we_i : {NumSlicesCtr{1'b0}}; |
| |
| // Arm the IV status tracker: After finishing, the IV registers can be written again |
| // by software. We need to make sure software does not partially update the IV. |
| iv_arm = (doing_cbc_enc | |
| doing_cbc_dec | |
| doing_cfb_enc | |
| doing_cfb_dec | |
| doing_ofb | |
| doing_ctr) & cipher_out_done; |
| |
| // Proceed upon successful handshake. |
| if (cipher_out_done) begin |
| block_ctr_decr = 1'b1; |
| data_out_we_o = 1'b1; |
| aes_ctrl_ns = CTRL_IDLE; |
| end |
| end |
| end |
| |
| CTRL_CLEAR_I: begin |
| // Clear input registers such as Initial Key, IV and input data registers. |
| if (key_iv_data_in_clear_i) begin |
| // Initial Key |
| key_init_sel_o = KEY_INIT_CLEAR; |
| key_init_we_o = {NumSharesKey * NumRegsKey{1'b1}}; |
| key_init_clear = 1'b1; |
| |
| // IV |
| iv_sel_o = IV_CLEAR; |
| iv_we_o = {NumSlicesCtr{1'b1}}; |
| iv_clear = 1'b1; |
| |
| // Input data |
| data_in_we_o = 1'b1; |
| data_in_prev_sel_o = DIP_CLEAR; |
| data_in_prev_we_o = 1'b1; |
| end |
| aes_ctrl_ns = CTRL_CLEAR_CO; |
| end |
| |
| CTRL_CLEAR_CO: begin |
| // Wait for cipher core to clear internal Full Key and Decryption Key registers and/or |
| // the state register and clear output data registers afterwards. |
| |
| // Perform handshake with cipher core. |
| cipher_out_ready_o = 1'b1; |
| if (cipher_out_valid_i) begin |
| |
| // Full Key and Decryption Key registers are cleared by the cipher core. |
| // key_iv_data_in_clear_i is acknowledged by the cipher core with cipher_key_clear_i. |
| if (cipher_key_clear_i) begin |
| // Clear the trigger bit. |
| key_iv_data_in_clear_we = 1'b1; |
| end |
| |
| // To clear the output data registers, we re-use the muxing resources of the cipher core. |
| // data_out_clear_i is acknowledged by the cipher core with cipher_data_out_clear_i. |
| if (cipher_data_out_clear_i) begin |
| // Clear output data and the trigger bit. Don't release data from cipher core in case |
| // of mux selector or sparsely encoded signals taking on invalid values. |
| data_out_we_o = ~mux_sel_err_i & ~sp_enc_err_i & ~cipher_op_err; |
| data_out_clear_we = 1'b1; |
| end |
| |
| aes_ctrl_ns = CTRL_IDLE; |
| end |
| end |
| |
| CTRL_ERROR: begin |
| // SEC_CM: MAIN.FSM.GLOBAL_ESC |
| // SEC_CM: MAIN.FSM.LOCAL_ESC |
| // Terminal error state |
| alert_o = 1'b1; |
| end |
| |
| // We should never get here. If we do (e.g. via a malicious glitch), error out immediately. |
| default: begin |
| aes_ctrl_ns = CTRL_ERROR; |
| alert_o = 1'b1; |
| end |
| endcase |
| |
| // Unconditionally jump into the terminal error state in case a mux selector or a sparsely |
| // encoded signal becomes invalid, or if the life cycle controller triggers an escalation. |
| if (mux_sel_err_i || sp_enc_err_i || cipher_op_err || |
| lc_escalate_en_i != lc_ctrl_pkg::Off) begin |
| aes_ctrl_ns = CTRL_ERROR; |
| end |
| end |
| |
| // SEC_CM: MAIN.FSM.SPARSE |
| `PRIM_FLOP_SPARSE_FSM(u_state_regs, aes_ctrl_ns, aes_ctrl_cs, aes_ctrl_e, CTRL_IDLE) |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin : reg_fsm |
| if (!rst_ni) begin |
| prng_reseed_done_q <= 1'b0; |
| end else begin |
| prng_reseed_done_q <= prng_reseed_done_d; |
| end |
| end |
| |
| ///////////////////// |
| // Status Tracking // |
| ///////////////////// |
| |
| // We only take a new sideload key if sideload is enabled, if the provided sideload key is marked |
| // as valid, and after the control register has been written for the second time. After that |
| // point we don't update the key anymore, as we don't have a notion of when it actually changes. |
| // This would be required to trigger decryption key generation for ECB/CBC decryption. |
| // To update the sideload key, software has to: |
| // 1) wait unitl AES is idle, |
| // 2) wait for the key manager to provide the new key, |
| // 3) start a new message by writing the control register and providing the IV (if needed). |
| assign key_sideload = sideload_i & key_sideload_valid_i & ctrl_we_q & ~ctrl_phase_i; |
| |
| // We only use clean initial keys. Either software/counter has updated |
| // - all initial key registers, or |
| // - none of the initial key registers but the registers were updated in the past. |
| aes_reg_status #( |
| .Width ( $bits(key_init_we_o) ) |
| ) u_reg_status_key_init ( |
| .clk_i ( clk_i ), |
| .rst_ni ( rst_ni ), |
| .we_i ( key_init_we_o ), |
| .use_i ( key_init_load ), |
| .clear_i ( key_init_clear ), |
| .arm_i ( key_init_arm ), |
| .new_o ( key_init_new ), |
| .new_pulse_o ( key_init_new_pulse ), |
| .clean_o ( key_init_ready ) |
| ); |
| |
| // We only use clean and unused IVs. Either software/counter has updated |
| // - all IV registers, or |
| // - none of the IV registers but the registers were updated in the past |
| // and this particular IV has not yet been used. |
| aes_reg_status #( |
| .Width ( $bits(iv_we_o) ) |
| ) u_reg_status_iv ( |
| .clk_i ( clk_i ), |
| .rst_ni ( rst_ni ), |
| .we_i ( iv_we_o ), |
| .use_i ( iv_load ), |
| .clear_i ( iv_clear ), |
| .arm_i ( iv_arm ), |
| .new_o ( iv_ready ), |
| .new_pulse_o ( ), |
| .clean_o ( ) |
| ); |
| |
| // Input and output data register status tracking detects if: |
| // - A complete new data input block is available, and |
| // - An output data block has been read completely. |
| // The status tracking needs to be cleared upon writes to the control register. The clearing is |
| // applied one cycle later here to avoid zero-latency loops. This additional delay is not |
| // relevant as if we are about to start encryption/decryption, we anyway don't allow writes |
| // to the control register. |
| always_ff @(posedge clk_i or negedge rst_ni) begin : reg_ctrl_we |
| if (!rst_ni) begin |
| ctrl_we_q <= 1'b0; |
| end else begin |
| ctrl_we_q <= ctrl_we_o; |
| end |
| end |
| assign clear_in_out_status = ctrl_we_q; |
| |
| // Collect writes to data input registers. Cleared if: |
| // - data is loaded into cipher core, |
| // - clearing data input registers with random data (all data_in_qe_i bits high in next cycle), |
| // - clearing the status tracking. |
| assign data_in_new_d = data_in_load || &data_in_qe_i || clear_in_out_status ? '0 : |
| data_in_new_q | data_in_qe_i; |
| assign data_in_new = &data_in_new_d; |
| |
| // Collect reads of data output registers. data_out_read is high for one clock cycle only and |
| // clears output_valid_q unless new output is written in the exact same cycle. Cleared if: |
| // - clearing data ouput registers with random data, |
| // - clearing the status tracking. |
| assign data_out_read_d = &data_out_read_q || clear_in_out_status ? '0 : |
| data_out_read_q | data_out_re_i; |
| assign data_out_read = &data_out_read_d; |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin : reg_edge_detection |
| if (!rst_ni) begin |
| data_in_new_q <= '0; |
| data_out_read_q <= '0; |
| end else begin |
| data_in_new_q <= data_in_new_d; |
| data_out_read_q <= data_out_read_d; |
| end |
| end |
| |
| // Status register bits for data input and output |
| // Cleared to 1 if: |
| // - data is loaded into cipher core, |
| // - clearing data input registers with random data, |
| // - clearing the status tracking. |
| assign input_ready = ~data_in_new; |
| assign input_ready_we = data_in_new | data_in_load | data_in_we_o | clear_in_out_status; |
| |
| // Cleared if: |
| // - all data output registers have been read (unless new output is written in the same cycle), |
| // - clearing data ouput registers with random data, |
| // - clearing the status tracking. |
| assign output_valid = data_out_we_o & ~data_out_clear_we; |
| assign output_valid_we = data_out_we_o | data_out_read | data_out_clear_we | |
| clear_in_out_status; |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin : reg_output_valid |
| if (!rst_ni) begin |
| output_valid_q <= '0; |
| end else if (output_valid_we) begin |
| output_valid_q <= output_valid; |
| end |
| end |
| |
| // Output lost status register bit |
| // Cleared when updating the Control Register. Set when overwriting previous output data that has |
| // not yet been read. |
| assign output_lost = ctrl_we_o ? 1'b0 : |
| output_lost_i ? 1'b1 : output_valid_q & ~data_out_read; |
| assign output_lost_we = ctrl_we_o | data_out_we_o; |
| |
| // Should fatal alerts clear the status and trigger register? |
| assign clear_on_fatal = ClearStatusOnFatalAlert ? alert_fatal_i : 1'b0; |
| |
| ///////////////////// |
| // Status Register // |
| ///////////////////// |
| assign idle_o = clear_on_fatal ? 1'b0 : idle; |
| assign idle_we_o = clear_on_fatal ? 1'b1 : idle_we; |
| assign stall_o = clear_on_fatal ? 1'b0 : stall; |
| assign stall_we_o = clear_on_fatal ? 1'b1 : stall_we; |
| assign output_lost_o = clear_on_fatal ? 1'b0 : output_lost; |
| assign output_lost_we_o = clear_on_fatal ? 1'b1 : output_lost_we; |
| assign output_valid_o = clear_on_fatal ? 1'b0 : output_valid; |
| assign output_valid_we_o = clear_on_fatal ? 1'b1 : output_valid_we; |
| assign input_ready_o = clear_on_fatal ? 1'b0 : input_ready; |
| assign input_ready_we_o = clear_on_fatal ? 1'b1 : input_ready_we; |
| |
| ////////////////////// |
| // Trigger Register // |
| ////////////////////// |
| // Most triggers are only ever cleared by control. Fatal alerts clear all bits in the trigger |
| // register. |
| assign start_we_o = clear_on_fatal ? 1'b1 : start_we; |
| assign key_iv_data_in_clear_we_o = clear_on_fatal ? 1'b1 : key_iv_data_in_clear_we; |
| assign data_out_clear_we_o = clear_on_fatal ? 1'b1 : data_out_clear_we; |
| |
| // If configured, trigger the reseeding of the PRNGs used for clearing and masking purposes after |
| // the key has been updated. |
| assign prng_reseed_o = clear_on_fatal ? 1'b0 : |
| key_init_new_pulse ? 1'b1 : 1'b0; |
| assign prng_reseed_we_o = clear_on_fatal ? 1'b1 : |
| key_init_new_pulse ? key_touch_forces_reseed_i : prng_reseed_we; |
| |
| //////////////////////////// |
| // PRNG Reseeding Counter // |
| //////////////////////////// |
| // Count the number of blocks since the start of the message to determine when the masking PRNG |
| // inside the cipher core needs to be reseeded. |
| if (SecMasking) begin : gen_block_ctr |
| logic block_ctr_set; |
| logic [BlockCtrWidth-1:0] block_ctr_d, block_ctr_q; |
| logic [BlockCtrWidth-1:0] block_ctr_set_val, block_ctr_decr_val; |
| |
| assign block_ctr_expr = block_ctr_q == '0; |
| assign block_ctr_set = ctrl_we_q | (block_ctr_decr & (block_ctr_expr | cipher_prng_reseed_i)); |
| |
| assign block_ctr_set_val = prng_reseed_rate_i == PER_1 ? '0 : |
| prng_reseed_rate_i == PER_64 ? BlockCtrWidth'(63) : |
| prng_reseed_rate_i == PER_8K ? BlockCtrWidth'(8191) : '0; |
| |
| assign block_ctr_decr_val = block_ctr_q - BlockCtrWidth'(1); |
| |
| assign block_ctr_d = block_ctr_set ? block_ctr_set_val : |
| block_ctr_decr ? block_ctr_decr_val : block_ctr_q; |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin : reg_block_ctr |
| if (!rst_ni) begin |
| block_ctr_q <= '0; |
| end else begin |
| block_ctr_q <= block_ctr_d; |
| end |
| end |
| |
| end else begin : gen_no_block_ctr |
| assign block_ctr_expr = 1'b0; |
| |
| // Tie off unused signals. |
| logic unused_block_ctr_decr; |
| prs_rate_e unused_prng_reseed_rate; |
| logic unused_cipher_prng_reseed; |
| assign unused_block_ctr_decr = block_ctr_decr; |
| assign unused_prng_reseed_rate = prng_reseed_rate_i; |
| assign unused_cipher_prng_reseed = cipher_prng_reseed_i; |
| end |
| |
| //////////////// |
| // Assertions // |
| //////////////// |
| |
| // Create a lint error to reduce the risk of accidentally disabling the masking. |
| `ASSERT_STATIC_LINT_ERROR(AesControlFsmSecMaskingNonDefault, SecMasking == 1) |
| |
| // Selectors must be known/valid |
| `ASSERT(AesModeValid, !ctrl_err_storage_i |-> mode_i inside { |
| AES_ECB, |
| AES_CBC, |
| AES_CFB, |
| AES_OFB, |
| AES_CTR, |
| AES_NONE |
| }) |
| `ASSERT(AesOpValid, !ctrl_err_storage_i |-> op_i inside { |
| AES_ENC, |
| AES_DEC |
| }) |
| `ASSERT(AesCiphOpValid, !cipher_op_err |-> cipher_op_i inside { |
| CIPH_FWD, |
| CIPH_INV |
| }) |
| `ASSERT(AesControlStateValid, !alert_o |-> aes_ctrl_cs inside { |
| CTRL_IDLE, |
| CTRL_LOAD, |
| CTRL_PRNG_UPDATE, |
| CTRL_PRNG_RESEED, |
| CTRL_FINISH, |
| CTRL_CLEAR_I, |
| CTRL_CLEAR_CO |
| }) |
| |
| // Check parameters |
| `ASSERT_INIT(AesNumSlicesCtr, NumSlicesCtr == 8) |
| |
| endmodule |