blob: e2f8b455b5f6198822e9ebeba10882fa36834671 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/lib/dif/dif_rstmgr.h"
#include "gtest/gtest.h"
#include "sw/device/lib/base/bitfield.h"
#include "sw/device/lib/base/mmio.h"
#include "sw/device/lib/base/testing/mock_mmio.h"
#include "sw/device/lib/dif/dif_base.h"
#include "rstmgr_regs.h" // Generated.
namespace dif_rstmgr_unittest {
namespace {
using mock_mmio::MmioTest;
using mock_mmio::MockDevice;
using testing::Each;
using testing::ElementsAreArray;
using testing::Eq;
using testing::IsSubsetOf;
using testing::Test;
class RstmgrTest : public Test, public MmioTest {
protected:
dif_rstmgr_t rstmgr_ = {.base_addr = dev().region()};
};
class InitTest : public RstmgrTest {};
TEST_F(InitTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_init(dev().region(), nullptr), kDifBadArg);
}
TEST_F(InitTest, Success) {
dif_rstmgr_t rstmgr;
EXPECT_EQ(dif_rstmgr_init(dev().region(), &rstmgr), kDifOk);
}
class ResetTest : public RstmgrTest {};
TEST_F(ResetTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_reset(nullptr), kDifBadArg);
}
TEST_F(ResetTest, Success) {
EXPECT_WRITE32(RSTMGR_RESET_INFO_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
EXPECT_WRITE32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
EXPECT_EQ(dif_rstmgr_reset(&rstmgr_), kDifOk);
}
class ResetLockTest : public RstmgrTest {};
TEST_F(ResetLockTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_reset_lock(nullptr, 0), kDifBadArg);
}
TEST_F(ResetLockTest, BadPeripheral) {
EXPECT_EQ(dif_rstmgr_reset_lock(&rstmgr_, RSTMGR_PARAM_NUM_SW_RESETS),
kDifBadArg);
}
TEST_F(ResetLockTest, Success) {
for (uint32_t bit_index = 0; bit_index < RSTMGR_PARAM_NUM_SW_RESETS;
++bit_index) {
// When bit is set to `0`, it means that the software reset for the
// peripheral is locked. One by one lock every peripheral software reset,
// by setting all bits high apart from the peripheral under test that is
// indexed by `bit_index`.
uint32_t bitfield = bitfield_bit32_write(
std::numeric_limits<uint32_t>::max(), bit_index, false);
EXPECT_WRITE32(RSTMGR_SW_RST_REGWEN_REG_OFFSET, bitfield);
EXPECT_EQ(dif_rstmgr_reset_lock(&rstmgr_, bit_index), kDifOk);
}
}
class ResetIsLockedTest : public RstmgrTest {};
TEST_F(ResetIsLockedTest, NullArgs) {
bool is_locked;
EXPECT_EQ(dif_rstmgr_reset_is_locked(nullptr, 0, nullptr), kDifBadArg);
EXPECT_EQ(dif_rstmgr_reset_is_locked(nullptr, 0, &is_locked), kDifBadArg);
EXPECT_EQ(dif_rstmgr_reset_is_locked(&rstmgr_, 0, nullptr), kDifBadArg);
}
TEST_F(ResetIsLockedTest, BadPeripheral) {
bool is_locked;
EXPECT_EQ(dif_rstmgr_reset_is_locked(&rstmgr_, RSTMGR_PARAM_NUM_SW_RESETS,
&is_locked),
kDifBadArg);
}
TEST_F(ResetIsLockedTest, Success) {
for (uint32_t bit_index = 0; bit_index < RSTMGR_PARAM_NUM_SW_RESETS;
++bit_index) {
// When bit is set to `0`, it means that the software reset for the
// peripheral is locked. One by one we check every peripheral, by setting
// all bits high apart from the peripheral under test that is indexed
// by `bit_index`.
uint32_t bit_locked = bitfield_bit32_write(
std::numeric_limits<uint32_t>::max(), bit_index, false);
EXPECT_READ32(RSTMGR_SW_RST_REGWEN_REG_OFFSET, bit_locked);
bool is_locked = false;
EXPECT_EQ(dif_rstmgr_reset_is_locked(&rstmgr_, bit_index, &is_locked),
kDifOk);
EXPECT_TRUE(is_locked);
is_locked = true;
EXPECT_READ32(RSTMGR_SW_RST_REGWEN_REG_OFFSET, {{bit_index, true}});
EXPECT_EQ(dif_rstmgr_reset_is_locked(&rstmgr_, bit_index, &is_locked),
kDifOk);
EXPECT_FALSE(is_locked);
}
}
class ResetCausesGetTest : public RstmgrTest {
protected:
// Make sure that the test is up-to-date with the implementation.
ResetCausesGetTest() {
// Make sure that the last reset reason in the test matches the last reset
// reason in the DIF at the time of writing this test.
bitfield_field32_t last = reset_info_reasons_.back();
uint32_t bitfield = bitfield_field32_write(0, last, last.mask);
EXPECT_EQ(bitfield, kDifRstmgrResetInfoHwReq);
// Number of reset reasons between test and the peripheral match at the
// time of writing this test.
EXPECT_EQ(reset_info_reasons_.size(), 4);
}
const std::vector<bitfield_field32_t> reset_info_reasons_{
bitfield_bit32_to_field32(RSTMGR_RESET_INFO_POR_BIT),
bitfield_bit32_to_field32(RSTMGR_RESET_INFO_LOW_POWER_EXIT_BIT),
bitfield_bit32_to_field32(RSTMGR_RESET_INFO_NDM_RESET_BIT),
RSTMGR_RESET_INFO_HW_REQ_FIELD,
};
};
TEST_F(ResetCausesGetTest, NullArgs) {
dif_rstmgr_reset_info_bitfield_t info;
EXPECT_EQ(dif_rstmgr_reset_info_get(nullptr, nullptr), kDifBadArg);
EXPECT_EQ(dif_rstmgr_reset_info_get(nullptr, &info), kDifBadArg);
EXPECT_EQ(dif_rstmgr_reset_info_get(&rstmgr_, nullptr), kDifBadArg);
}
TEST_F(ResetCausesGetTest, Success) {
// Single reason expectations.
for (auto reason : reset_info_reasons_) {
uint32_t bitfield = bitfield_field32_write(0, reason, reason.mask);
EXPECT_READ32(RSTMGR_RESET_INFO_REG_OFFSET, bitfield);
dif_rstmgr_reset_info_bitfield_t info;
EXPECT_EQ(dif_rstmgr_reset_info_get(&rstmgr_, &info), kDifOk);
EXPECT_EQ(info & bitfield, info);
}
// The first and the last reset causes.
bitfield_field32_t first = reset_info_reasons_.front();
bitfield_field32_t last = reset_info_reasons_.back();
EXPECT_READ32(RSTMGR_RESET_INFO_REG_OFFSET, {
{first.index, first.mask},
{last.index, last.mask},
});
dif_rstmgr_reset_info_bitfield_t info;
EXPECT_EQ(dif_rstmgr_reset_info_get(&rstmgr_, &info), kDifOk);
// Make sure that `kDifRstmgrResetInfoPor` and `kDifRstmgrResetInfoHwReq`
// reset causes are set.
EXPECT_EQ(info & (kDifRstmgrResetInfoPor | kDifRstmgrResetInfoHwReq), info);
}
class ResetCausesClearTest : public RstmgrTest {};
TEST_F(ResetCausesClearTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_reset_info_clear(nullptr), kDifBadArg);
}
TEST_F(ResetCausesClearTest, Success) {
EXPECT_WRITE32(RSTMGR_RESET_INFO_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
EXPECT_EQ(dif_rstmgr_reset_info_clear(&rstmgr_), kDifOk);
}
class AlertInfoSetTest : public RstmgrTest {};
TEST_F(AlertInfoSetTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_alert_info_set_enabled(nullptr, kDifToggleEnabled),
kDifBadArg);
}
TEST_F(AlertInfoSetTest, Success) {
// Enable.
EXPECT_WRITE32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET,
{
{RSTMGR_ALERT_INFO_CTRL_EN_BIT, true},
});
EXPECT_EQ(dif_rstmgr_alert_info_set_enabled(&rstmgr_, kDifToggleEnabled),
kDifOk);
// Disable.
EXPECT_WRITE32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET,
{
{RSTMGR_ALERT_INFO_CTRL_EN_BIT, false},
});
EXPECT_EQ(dif_rstmgr_alert_info_set_enabled(&rstmgr_, kDifToggleDisabled),
kDifOk);
}
class AlertInfoGetTest : public RstmgrTest {};
TEST_F(AlertInfoGetTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_alert_info_get_enabled(nullptr, nullptr), kDifBadArg);
EXPECT_EQ(dif_rstmgr_alert_info_get_enabled(&rstmgr_, nullptr), kDifBadArg);
dif_toggle_t state;
EXPECT_EQ(dif_rstmgr_alert_info_get_enabled(nullptr, &state), kDifBadArg);
}
TEST_F(AlertInfoGetTest, Success) {
// Enabled.
EXPECT_READ32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET,
{
{RSTMGR_ALERT_INFO_CTRL_EN_BIT, true},
});
dif_toggle_t state = kDifToggleDisabled;
EXPECT_EQ(dif_rstmgr_alert_info_get_enabled(&rstmgr_, &state), kDifOk);
EXPECT_EQ(state, kDifToggleEnabled);
// Disabled.
//
// Make sure that the only relevant `enabled` bit is read - set all bits
// high apart from the `enabled` bit.
uint32_t register_value =
bitfield_bit32_write(std::numeric_limits<uint32_t>::max(),
RSTMGR_ALERT_INFO_CTRL_EN_BIT, false);
EXPECT_READ32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET, register_value);
state = kDifToggleEnabled;
EXPECT_EQ(dif_rstmgr_alert_info_get_enabled(&rstmgr_, &state), kDifOk);
EXPECT_EQ(state, kDifToggleDisabled);
}
class AlertInfoDumpReadTest : public RstmgrTest {
protected:
AlertInfoDumpReadTest() {
for (uint32_t i = 0; i < DIF_RSTMGR_ALERT_INFO_MAX_SIZE; ++i) {
src_[i] = dev().GarbageMemory<uint32_t>();
}
}
dif_rstmgr_alert_info_dump_segment_t src_[DIF_RSTMGR_ALERT_INFO_MAX_SIZE];
};
TEST_F(AlertInfoDumpReadTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_alert_info_dump_read(
nullptr, nullptr, DIF_RSTMGR_ALERT_INFO_MAX_SIZE, nullptr),
kDifBadArg);
size_t segments_read;
EXPECT_EQ(
dif_rstmgr_alert_info_dump_read(
nullptr, nullptr, DIF_RSTMGR_ALERT_INFO_MAX_SIZE, &segments_read),
kDifBadArg);
dif_rstmgr_alert_info_dump_segment_t dump[DIF_RSTMGR_ALERT_INFO_MAX_SIZE];
EXPECT_EQ(dif_rstmgr_alert_info_dump_read(
nullptr, &dump[0], DIF_RSTMGR_ALERT_INFO_MAX_SIZE, nullptr),
kDifBadArg);
EXPECT_EQ(
dif_rstmgr_alert_info_dump_read(
nullptr, &dump[0], DIF_RSTMGR_ALERT_INFO_MAX_SIZE, &segments_read),
kDifBadArg);
EXPECT_EQ(
dif_rstmgr_alert_info_dump_read(
&rstmgr_, nullptr, DIF_RSTMGR_ALERT_INFO_MAX_SIZE, &segments_read),
kDifBadArg);
EXPECT_EQ(dif_rstmgr_alert_info_dump_read(
&rstmgr_, &dump[0], DIF_RSTMGR_ALERT_INFO_MAX_SIZE, nullptr),
kDifBadArg);
}
TEST_F(AlertInfoDumpReadTest, BadDumpSize) {
EXPECT_READ32(RSTMGR_ALERT_INFO_ATTR_REG_OFFSET,
DIF_RSTMGR_ALERT_INFO_MAX_SIZE);
size_t segments_read = 0xA5A5A5A5;
dif_rstmgr_alert_info_dump_segment_t dump[DIF_RSTMGR_ALERT_INFO_MAX_SIZE];
EXPECT_EQ(dif_rstmgr_alert_info_dump_read(&rstmgr_, &dump[0],
DIF_RSTMGR_ALERT_INFO_MAX_SIZE - 1,
&segments_read),
kDifError);
EXPECT_EQ(segments_read, 0xA5A5A5A5);
}
TEST_F(AlertInfoDumpReadTest, SuccessFullBuffer) {
EXPECT_READ32(RSTMGR_ALERT_INFO_ATTR_REG_OFFSET,
DIF_RSTMGR_ALERT_INFO_MAX_SIZE);
EXPECT_READ32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET, 1);
for (uint32_t i = 0; i < DIF_RSTMGR_ALERT_INFO_MAX_SIZE; ++i) {
EXPECT_WRITE32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET,
{
{
RSTMGR_ALERT_INFO_CTRL_EN_BIT,
true,
},
{
RSTMGR_ALERT_INFO_CTRL_INDEX_OFFSET,
i,
},
});
EXPECT_READ32(RSTMGR_ALERT_INFO_REG_OFFSET, src_[i]);
}
size_t segments_read = 0;
dif_rstmgr_alert_info_dump_segment_t dump[DIF_RSTMGR_ALERT_INFO_MAX_SIZE];
EXPECT_EQ(
dif_rstmgr_alert_info_dump_read(
&rstmgr_, &dump[0], DIF_RSTMGR_ALERT_INFO_MAX_SIZE, &segments_read),
kDifOk);
EXPECT_EQ(segments_read, DIF_RSTMGR_ALERT_INFO_MAX_SIZE);
EXPECT_THAT(src_, ElementsAreArray(dump));
}
TEST_F(AlertInfoDumpReadTest, SuccessDumpSmaller) {
constexpr uint32_t dump_size = DIF_RSTMGR_ALERT_INFO_MAX_SIZE - 1;
EXPECT_READ32(RSTMGR_ALERT_INFO_ATTR_REG_OFFSET, dump_size);
EXPECT_READ32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET, 1);
for (uint32_t i = 0; i < dump_size; ++i) {
EXPECT_WRITE32(RSTMGR_ALERT_INFO_CTRL_REG_OFFSET,
{
{
RSTMGR_ALERT_INFO_CTRL_EN_BIT,
true,
},
{
RSTMGR_ALERT_INFO_CTRL_INDEX_OFFSET,
i,
},
});
EXPECT_READ32(RSTMGR_ALERT_INFO_REG_OFFSET, src_[i]);
}
size_t segments_read = 0;
dif_rstmgr_alert_info_dump_segment_t dump[dump_size];
EXPECT_EQ(
dif_rstmgr_alert_info_dump_read(
&rstmgr_, &dump[0], DIF_RSTMGR_ALERT_INFO_MAX_SIZE, &segments_read),
kDifOk);
EXPECT_EQ(segments_read, dump_size);
EXPECT_THAT(dump, IsSubsetOf(src_));
}
class SoftwareResetTest : public RstmgrTest {};
TEST_F(SoftwareResetTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_software_reset(nullptr, 0, kDifRstmgrSoftwareReset),
kDifBadArg);
}
TEST_F(SoftwareResetTest, BadPeripheral) {
EXPECT_EQ(dif_rstmgr_software_reset(&rstmgr_, RSTMGR_PARAM_NUM_SW_RESETS,
kDifRstmgrSoftwareReset),
kDifBadArg);
}
TEST_F(SoftwareResetTest, SoftwareResetIsLocked) {
for (uint32_t bit_index = 0; bit_index < RSTMGR_PARAM_NUM_SW_RESETS;
++bit_index) {
// When bit is set to `0`, it means that the software reset for the
// peripheral is locked. One by one we check every peripheral, by setting
// all bits high apart from the peripheral under test that is indexed
// by `bit_index`.
uint32_t locked = bitfield_bit32_write(std::numeric_limits<uint32_t>::max(),
bit_index, false);
EXPECT_READ32(RSTMGR_SW_RST_REGWEN_REG_OFFSET, locked);
EXPECT_EQ(dif_rstmgr_software_reset(&rstmgr_, bit_index,
kDifRstmgrSoftwareResetHold),
kDifRstmgrSoftwareResetLocked);
}
}
TEST_F(SoftwareResetTest, SuccessHold) {
for (uint32_t bit_index = 0; bit_index < RSTMGR_PARAM_NUM_SW_RESETS;
++bit_index) {
// Software reset is not locked for any of the supported peripherals.
EXPECT_READ32(RSTMGR_SW_RST_REGWEN_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
// Check that reset can be asserted for every supported peripheral.
EXPECT_READ32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
// When bit is set to `0`, it means that the peripheral is held in reset.
// One by one hold every peripheral in reset, by setting all bits high apart
// from the peripheral under test that is indexed by `bit_index`.
uint32_t reset_hold = bitfield_bit32_write(
std::numeric_limits<uint32_t>::max(), bit_index, false);
EXPECT_WRITE32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, reset_hold);
EXPECT_EQ(dif_rstmgr_software_reset(&rstmgr_, bit_index,
kDifRstmgrSoftwareResetHold),
kDifOk);
}
}
TEST_F(SoftwareResetTest, SuccessRelease) {
for (uint32_t bit_index = 0; bit_index < RSTMGR_PARAM_NUM_SW_RESETS;
++bit_index) {
// Software reset is not locked for any of the supported peripherals.
EXPECT_READ32(RSTMGR_SW_RST_REGWEN_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
// Check that reset can be de-asserted for every supported peripheral.
EXPECT_READ32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, 0);
EXPECT_WRITE32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, {{bit_index, true}});
EXPECT_EQ(dif_rstmgr_software_reset(&rstmgr_, bit_index,
kDifRstmgrSoftwareResetRelease),
kDifOk);
}
}
TEST_F(SoftwareResetTest, SuccessReset) {
for (uint32_t bit_index = 0; bit_index < RSTMGR_PARAM_NUM_SW_RESETS;
++bit_index) {
// Software reset is not locked for any of the supported peripherals.
EXPECT_READ32(RSTMGR_SW_RST_REGWEN_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
// Check that reset can be asserted for every supported peripheral.
EXPECT_READ32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET,
std::numeric_limits<uint32_t>::max());
// When bit is set to `0`, it means that the peripheral is held in reset.
// One by one hold every peripheral in reset, by setting all bits high apart
// from the peripheral under test that is indexed by `bit_index`.
uint32_t reset_hold = bitfield_bit32_write(
std::numeric_limits<uint32_t>::max(), bit_index, false);
EXPECT_WRITE32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, reset_hold);
// Check that reset can be de-asserted for every supported peripheral.
EXPECT_READ32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, 0);
EXPECT_WRITE32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, {{bit_index, true}});
EXPECT_EQ(
dif_rstmgr_software_reset(&rstmgr_, bit_index, kDifRstmgrSoftwareReset),
kDifOk);
}
}
class SoftwareResetIsHeldTest : public RstmgrTest {};
TEST_F(SoftwareResetIsHeldTest, NullArgs) {
EXPECT_EQ(dif_rstmgr_software_reset_is_held(nullptr, 0, nullptr), kDifBadArg);
bool asserted;
EXPECT_EQ(dif_rstmgr_software_reset_is_held(nullptr, 0, &asserted),
kDifBadArg);
EXPECT_EQ(dif_rstmgr_software_reset_is_held(&rstmgr_, 0, nullptr),
kDifBadArg);
}
TEST_F(SoftwareResetIsHeldTest, BadPeripheral) {
bool asserted;
EXPECT_EQ(dif_rstmgr_software_reset_is_held(
&rstmgr_, RSTMGR_PARAM_NUM_SW_RESETS, &asserted),
kDifBadArg);
}
TEST_F(SoftwareResetIsHeldTest, Success) {
for (uint32_t bit_index = 0; bit_index < RSTMGR_PARAM_NUM_SW_RESETS;
++bit_index) {
uint32_t reset_is_held = bitfield_bit32_write(
std::numeric_limits<uint32_t>::max(), bit_index, false);
// Check in turn that every peripheral is held in software reset.
EXPECT_READ32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, reset_is_held);
bool asserted = false;
EXPECT_EQ(dif_rstmgr_software_reset_is_held(&rstmgr_, bit_index, &asserted),
kDifOk);
EXPECT_TRUE(asserted);
// Check in turn that every peripheral is not held in software reset.
EXPECT_READ32(RSTMGR_SW_RST_CTRL_N_REG_OFFSET, {{bit_index, true}});
asserted = true;
EXPECT_EQ(dif_rstmgr_software_reset_is_held(&rstmgr_, bit_index, &asserted),
kDifOk);
EXPECT_FALSE(asserted);
}
}
} // namespace
} // namespace dif_rstmgr_unittest