| // Mobilenet_v2_1.0_224 quant model |
| // MlModel struct initialization to include model I/O info. |
| // Bytecode loading, input/output processes. |
| |
| #include <springbok.h> |
| |
| #include "iree/base/api.h" |
| #include "iree/hal/api.h" |
| #include "mobilenet_v2.h" |
| #include "samples/util/util.h" |
| |
| // Compiled module embedded here to avoid file IO: |
| #include "samples/quant_model/mobilenet_quant_input_c.h" |
| #include "samples/quant_model/mobilenet_v2_bytecode_module_dylib_c.h" |
| |
| const MlModel kModel = { |
| .num_input = 1, |
| .num_input_dim = {4}, |
| .input_shape = {{1, 224, 224, 3}}, |
| .input_length = {224 * 224 * 3}, |
| .input_size_bytes = {sizeof(uint8_t)}, |
| .num_output = 1, |
| .output_length = {1001}, |
| .output_size_bytes = sizeof(uint8_t), |
| .hal_element_type = IREE_HAL_ELEMENT_TYPE_UINT_8, |
| .entry_func = "module.main", |
| .model_name = "mobilenet_v2_1.0_224_quant", |
| }; |
| |
| const iree_const_byte_span_t load_bytecode_module_data() { |
| const struct iree_file_toc_t *module_file_toc = |
| samples_quant_model_mobilenet_v2_bytecode_module_dylib_create(); |
| return iree_make_const_byte_span(module_file_toc->data, |
| module_file_toc->size); |
| } |
| |
| MobilenetV2Output score; |
| |
| iree_status_t load_input_data(const MlModel *model, void **buffer, |
| iree_byte_span_t **byte_span) { |
| byte_span[0] = malloc(sizeof(iree_byte_span_t)); |
| *byte_span[0] = |
| iree_make_byte_span(mobilenet_quant_input, |
| model->input_size_bytes[0] * model->input_length[0]); |
| return iree_ok_status(); |
| } |
| |
| iree_status_t process_output(const MlModel *model, |
| iree_hal_buffer_mapping_t *buffers, |
| MlOutput *output) { |
| iree_status_t result = iree_ok_status(); |
| // find the label index with best prediction |
| int best_out = 0; |
| int best_idx = -1; |
| for (int i = 0; i < model->output_length[0]; ++i) { |
| uint8_t out = ((uint8_t *)buffers[0].contents.data)[i]; |
| if (out > best_out) { |
| best_out = out; |
| best_idx = i; |
| } |
| } |
| score.best_out = best_out; |
| score.best_idx = best_idx; |
| |
| LOG_INFO("Image prediction result is: id: %d", best_idx + 1); |
| |
| output->result = &score; |
| output->len = sizeof(score); |
| return result; |
| } |