| // mnist float model |
| // MlModel struct initialization to include model I/O info. |
| // Bytecode loading, input/output processes. |
| |
| #include <springbok.h> |
| |
| #include "iree/base/api.h" |
| #include "iree/hal/api.h" |
| #include "samples/util/util.h" |
| #include "mnist.h" |
| |
| // Compiled module embedded here to avoid file IO: |
| #if !defined(BUILD_EMITC) |
| #include "samples/float_model/mnist_bytecode_module_static.h" |
| #include "samples/float_model/mnist_bytecode_module_static_c.h" |
| #else |
| #include "samples/float_model/mnist_c_module_static_c.h" |
| #include "samples/float_model/mnist_c_module_static_emitc.h" |
| #endif |
| #include "samples/float_model/mnist_input_c.h" |
| |
| const MlModel kModel = { |
| .num_input = 1, |
| .num_input_dim = {4}, |
| .input_shape = {{1, 28, 28, 1}}, |
| .input_length = {28 * 28 * 1}, |
| .input_size_bytes = {sizeof(float)}, |
| .num_output = 1, |
| .output_length = {10}, |
| .output_size_bytes = sizeof(float), |
| .hal_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32, |
| .entry_func = "module.predict", |
| .model_name = "mnist", |
| }; |
| |
| MnistOutput score; |
| |
| iree_status_t create_module(iree_vm_module_t **module) { |
| #if !defined(BUILD_EMITC) |
| const struct iree_file_toc_t *module_file_toc = |
| samples_float_model_mnist_bytecode_module_static_create(); |
| return iree_vm_bytecode_module_create( |
| iree_make_const_byte_span(module_file_toc->data, module_file_toc->size), |
| iree_allocator_null(), iree_allocator_system(), module); |
| #else |
| return module_create(iree_allocator_system(), module); |
| #endif |
| } |
| |
| const iree_hal_executable_library_header_t **library_query( |
| iree_hal_executable_library_version_t max_version, void *reserved) { |
| return mnist_linked_llvm_library_query(max_version, |
| /*reserved=*/reserved); |
| } |
| |
| iree_status_t load_input_data(const MlModel *model, void **buffer, |
| iree_byte_span_t **byte_span) { |
| byte_span[0] = malloc(sizeof(iree_byte_span_t)); |
| *byte_span[0] = iree_make_byte_span( |
| mnist_input, model->input_size_bytes[0] * model->input_length[0]); |
| return iree_ok_status(); |
| } |
| |
| iree_status_t process_output(const MlModel *model, |
| iree_hal_buffer_mapping_t *buffers, |
| MlOutput *output) { |
| iree_status_t result = iree_ok_status(); |
| // find the label index with best prediction |
| float best_out = 0.0; |
| int best_idx = -1; |
| for (int i = 0; i < model->output_length[0]; ++i) { |
| float out = ((float *)buffers[0].contents.data)[i]; |
| if (out > best_out) { |
| best_out = out; |
| best_idx = i; |
| } |
| } |
| |
| score.best_out = best_out; |
| score.best_idx = best_idx; |
| |
| LOG_INFO("Digit recognition result is: digit: %d", best_idx); |
| |
| output->result = &score; |
| output->len = sizeof(score); |
| return result; |
| } |