blob: 117aacbac6c1470338d1c1e01b9d24ac4f7615ee [file] [log] [blame]
#!/usr/bin/env python3
"""Generate ML model inputs from images."""
import argparse
import os
import struct
import urllib.request
import numpy as np
from PIL import Image
parser = argparse.ArgumentParser(
description='Generate inputs for ML models.')
parser.add_argument('--i', dest='input_name',
help='Model input image name', required=True)
parser.add_argument('--o', dest='output_file',
help='Output binary name', required=True)
parser.add_argument('--s', dest='input_shape',
help='Model input shape (example: "1, 224, 224, 3")', required=True)
parser.add_argument('--q', dest='is_quant', action='store_true',
help='Indicate it is quant model (default: False)')
parser.add_argument('--r', dest='float_input_range', default="-1.0, 1.0",
help='Float model input range (default: "-1.0, 1.0")')
args = parser.parse_args()
def write_binary_file(file_path, input, is_quant):
with open(file_path, "wb+") as file:
for d in input:
if is_quant:
file.write(struct.pack("<B", d))
else:
file.write(struct.pack("<f", d))
def gen_mlmodel_input(input_name, output_file, input_shape, is_quant):
if not os.path.exists(input_name):
raise RuntimeError("Input file %s doesn't exist" % {input_name})
if len(input_shape) < 3:
raise ValueError("Input shape < 3 dimensions")
resized_img = Image.open(input_name).resize(
(input_shape[1], input_shape[2]))
input = np.array(resized_img).reshape(np.prod(input_shape))
if not is_quant:
low = np.min(float_input_range)
high = np.max(float_input_range)
input = (high - low) * input / 255.0 + low
write_binary_file(output_file, input, is_quant)
if __name__ == '__main__':
# convert input shape to a list
input_shape = [int(x) for x in args.input_shape.split(',')]
float_input_range = [float(x) for x in args.float_input_range.split(',')]
gen_mlmodel_input(args.input_name, args.output_file,
input_shape, args.is_quant)