| /* |
| * Copyright 2024 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <memory> |
| |
| #include "crt/kelvin.h" |
| #include "crt/log.h" |
| #include "benchmarks/benchmark.h" |
| #include "benchmarks/cycle_count.h" |
| #include "tensorflow/lite/micro/micro_interpreter.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| #include "tensorflow/lite/micro/micro_mutable_op_resolver.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| |
| #if (PROFILE == 1) |
| #include "tensorflow/lite/micro/micro_profiler.h" |
| #endif |
| |
| #define STRINGIZE(x) #x |
| #define STR(x) STRINGIZE(x) |
| |
| // In order to include the model data generate from Bazel, include the header |
| // using the name passed as a macro. |
| #define MODEL_HEADER_DIRECTORY BENCHMARK_PATH/ |
| #define MODEL_HEADER_TYPE _model.h |
| #define MODEL_HEADER STR(MODEL_HEADER_DIRECTORY BENCHMARK_NAME MODEL_HEADER_TYPE) |
| #include MODEL_HEADER |
| |
| #if (TEST_DATA_INPUT == 1) |
| #define TEST_DATA_INPUT_HEADER_TYPE _input.h |
| #define TEST_DATA_INPUT_HEADER STR(MODEL_HEADER_DIRECTORY BENCHMARK_NAME TEST_DATA_INPUT_HEADER_TYPE) |
| #include TEST_DATA_INPUT_HEADER |
| #endif |
| |
| #if (TEST_DATA_OUTPUT == 1) |
| #define TEST_DATA_OUTPUT_HEADER_TYPE _output.h |
| #define TEST_DATA_OUTPUT_HEADER STR(MODEL_HEADER_DIRECTORY BENCHMARK_NAME TEST_DATA_OUTPUT_HEADER_TYPE) |
| #include TEST_DATA_OUTPUT_HEADER |
| #endif |
| |
| namespace { |
| constexpr int kTensorArenaSize = 2 * 1024 * 1024; |
| uint8_t g_tensor_arena[kTensorArenaSize] __attribute__((aligned(64))); |
| |
| __attribute__((section(".model_output_header"))) BenchmarkOutputHeader output_header = { |
| .return_code = 0, // Set by kelvin_start based on return value in main. |
| .iterations = 0, |
| .cycles = 0, |
| .mismatch_count = 0, |
| }; |
| |
| // This includes all ops currently used in the Kelvin model suite. More can be added. |
| constexpr int kAllOpsNum = 28; |
| std::unique_ptr<tflite::MicroMutableOpResolver<kAllOpsNum>> GetAllOpsResolver() { |
| tflite::MicroMutableOpResolver<kAllOpsNum> resolver; |
| resolver.AddAveragePool2D(); |
| resolver.AddMaxPool2D(); |
| resolver.AddConv2D(); |
| resolver.AddConcatenation(); |
| resolver.AddDepthwiseConv2D(); |
| resolver.AddDequantize(); |
| resolver.AddQuantize(); |
| resolver.AddReshape(); |
| resolver.AddSoftmax(); |
| resolver.AddCallOnce(); |
| resolver.AddVarHandle(); |
| resolver.AddReadVariable(); |
| resolver.AddAssignVariable(); |
| resolver.AddLogistic(); |
| resolver.AddStridedSlice(); |
| resolver.AddFullyConnected(); |
| resolver.AddPad(); |
| resolver.AddLeakyRelu(); |
| resolver.AddSplit(); |
| resolver.AddTransposeConv(); |
| resolver.AddAdd(); |
| resolver.AddSub(); |
| resolver.AddMean(); |
| resolver.AddPack(); |
| resolver.AddShape(); |
| resolver.AddResizeNearestNeighbor(); |
| resolver.AddTranspose(); |
| resolver.AddMul(); |
| return std::make_unique<tflite::MicroMutableOpResolver<kAllOpsNum>>(resolver); |
| } |
| |
| void _print64(const char* header, uint64_t number) { |
| uint32_t number_low = number & 0xFFFFFFFF; |
| uint32_t number_hi = number >> 32; |
| LOG_INFO("%s: 0x%08lx%08lx", header, number_hi, number_low); |
| } |
| |
| constexpr int kSuccess = 0; |
| constexpr int kAllocatonFailed = -1; |
| constexpr int kInvokeFailed = -2; |
| } // namespace |
| |
| |
| int main(int argc, char **argv) { |
| std::unique_ptr<tflite::MicroMutableOpResolver<kAllOpsNum>> resolver = GetAllOpsResolver(); |
| |
| const auto* model = tflite::GetModel(g_benchmark_model_data); |
| |
| uint8_t variable_arena[2048]; |
| tflite::MicroAllocator *variable_allocator = |
| tflite::MicroAllocator::Create(variable_arena, 1024); |
| tflite::MicroResourceVariables *resource_variables = |
| tflite::MicroResourceVariables::Create(variable_allocator, 20); |
| #if (PROFILE == 1) |
| tflite::MicroProfiler profiler; |
| std::unique_ptr<tflite::MicroInterpreter> interpreter = std::make_unique<tflite::MicroInterpreter>( |
| model, *resolver.get(), g_tensor_arena, kTensorArenaSize, resource_variables, &profiler); |
| // For a profiled model, just run a single iteration |
| const int iterations = 1; |
| #else |
| std::unique_ptr<tflite::MicroInterpreter> interpreter = std::make_unique<tflite::MicroInterpreter>( |
| model, *resolver.get(), g_tensor_arena, kTensorArenaSize, resource_variables); |
| const int iterations = ITERATIONS; |
| #endif |
| |
| // Run inference outside of benchmark to intialize model. |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| return kAllocatonFailed; |
| } |
| TfLiteTensor* input = interpreter->input(0); |
| |
| #if (TEST_DATA_INPUT == 1) |
| memcpy(tflite::GetTensorData<uint8_t>(input), g_benchmark_input, input->bytes); |
| #else |
| memset(tflite::GetTensorData<uint8_t>(input), 0, input->bytes); |
| #endif |
| |
| if (interpreter->Invoke() != kTfLiteOk) { |
| return kInvokeFailed; |
| } |
| |
| LOG_INFO("========== Begin Benchmark (%s) ==========", STR(BENCHMARK_NAME)); |
| uint64_t begin = mcycle_read(); |
| |
| // TODO(michaelbrooks): Possibly set/verify test data? |
| for (int i = 0; i < iterations; ++i) { |
| #if (TEST_DATA_INPUT == 1) |
| memcpy(tflite::GetTensorData<uint8_t>(input), g_benchmark_input, input->bytes); |
| #else |
| memset(tflite::GetTensorData<uint8_t>(input), 0, input->bytes); |
| #endif |
| interpreter->Invoke(); |
| } |
| uint64_t end = mcycle_read(); |
| uint64_t num_cycles = end - begin; |
| |
| #if (TEST_DATA_OUTPUT == 1) |
| TfLiteTensor* output = interpreter->output(0); |
| int mismatch_count = 0; |
| for (size_t i = 0; i < output->bytes; ++i) { |
| int8_t vx = (int8_t)(*(tflite::GetTensorData<int8_t>(output) + i) & 0xFF); |
| int8_t vy = (int8_t)(*(g_benchmark_output + i) & 0xFF); |
| auto delta = ((vx) > (vy)) ? ((vx) - (vy)) : ((vy) - (vx)); |
| if (delta) { |
| mismatch_count += 1; |
| } |
| } |
| output_header.mismatch_count = mismatch_count; |
| #endif |
| |
| #if (PROFILE == 1) |
| profiler.LogCsv(); |
| #endif |
| |
| // Stores benchmark information in output header for other cores to access. |
| output_header.iterations = iterations; |
| output_header.cycles = num_cycles; |
| |
| // If running on a simulator, print cycle information. |
| uint64_t average_cycles = num_cycles / iterations; |
| LOG_INFO("Iterations: %ld", output_header.iterations); |
| _print64("Total Cycles: ", output_header.cycles); |
| _print64("Average Cycles per Iteration: ", average_cycles); |
| #if (TEST_DATA_OUTPUT == 1) |
| LOG_INFO("Mismatch_count: %d", mismatch_count); |
| #endif |
| LOG_INFO("========== End Benchmark =========="); |
| return kSuccess; |
| } |