| /* |
| * Copyright 2024 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <cstdlib> |
| #include <memory> |
| |
| #include "crt/kelvin.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h" |
| #include "tensorflow/lite/kernels/internal/runtime_shape.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tflm/opt/conv_s8.h" |
| #include "tflm/opt/conv_util.h" |
| #include "tflm/opt/opt.h" |
| |
| namespace kelvin::opt { |
| namespace { |
| |
| void VectorSwizzle8(const int32_t* input, int32_t* output, int32_t* output2) { |
| // swizzle to achive following pattern |
| // out 1 : [0, 2, 1, 3, 0, 2, 1, 3] |
| // out 2 : [4, 6, 5, 7, 4, 6, 5, 7] |
| |
| const int32_t(&in)[8] = *(int32_t(*)[8])input; |
| int32_t(&out)[8] = *(int32_t(*)[8])output; |
| int32_t(&out2)[8] = *(int32_t(*)[8])output2; |
| |
| out[0] = in[0]; |
| out[2] = in[1]; |
| out[1] = in[2]; |
| out[3] = in[3]; |
| out[4] = in[0]; |
| out[6] = in[1]; |
| out[5] = in[2]; |
| out[7] = in[3]; |
| |
| out2[0] = in[4]; |
| out2[2] = in[5]; |
| out2[1] = in[6]; |
| out2[3] = in[7]; |
| out2[4] = in[4]; |
| out2[6] = in[5]; |
| out2[5] = in[6]; |
| out2[7] = in[7]; |
| } |
| |
| void PaddedFilter_N_H_W_M(const int8_t* input, int8_t* output, int N, int H, |
| int W, int M) { |
| if (M != 3) { |
| MicroPrintf("Filter shuffling can only handle M(input_depth) == 3"); |
| exit(-1); |
| } |
| |
| const int8_t(&in)[N][H][W][M] = *(int8_t(*)[N][H][W][M])input; |
| int8_t(&out)[N / 8][3][8 * 4 * 3] = *(int8_t(*)[N / 8][3][8 * 4 * 3]) output; |
| int group = 0; |
| // Filter data is being reorganized into groups of 8 channels and falttening |
| // row. 9th element of 3x3 filter is padded (9000 9000 9000 9000) 8 channels |
| // are aligned this way ( c0 c1 c2 c3) |
| for (int ky = 0; ky < H; ++ky) { |
| int filter_element[N / 8]{0}; |
| for (int kx = 0; kx < W; ++kx) { |
| for (int output_channel = 0; output_channel < N; ++output_channel) { |
| for (int input_channel = 0; input_channel < M; ++input_channel) { |
| group = output_channel >> 3; |
| if (kx == 1 && input_channel == 0) { |
| continue; |
| } |
| if (kx == 2 && (input_channel < 2)) { |
| continue; |
| } |
| |
| if (kx == 0 && input_channel == 2) { |
| out[group][ky][filter_element[group]] = |
| in[output_channel][ky][kx][input_channel]; |
| filter_element[group] += 1; |
| out[group][ky][filter_element[group]] = |
| in[output_channel][ky][kx + 1][0]; |
| filter_element[group] += 1; |
| } else if (kx == 1 && input_channel == 2) { |
| out[group][ky][filter_element[group]] = |
| in[output_channel][ky][kx][input_channel]; |
| filter_element[group] += 1; |
| out[group][ky][filter_element[group]] = |
| in[output_channel][ky][kx + 1][0]; |
| filter_element[group] += 1; |
| out[group][ky][filter_element[group]] = |
| in[output_channel][ky][kx + 1][1]; |
| filter_element[group] += 1; |
| } else if (kx == 2 && input_channel == 2) { |
| out[group][ky][filter_element[group]] = |
| in[output_channel][ky][kx][input_channel]; |
| filter_element[group] += 1; |
| out[group][ky][filter_element[group]] = 0; |
| filter_element[group] += 1; |
| out[group][ky][filter_element[group]] = 0; |
| filter_element[group] += 1; |
| out[group][ky][filter_element[group]] = 0; |
| filter_element[group] += 1; |
| } else { |
| out[group][ky][filter_element[group]] = |
| in[output_channel][ky][kx][input_channel]; |
| filter_element[group] += 1; |
| } |
| } |
| } |
| } |
| } |
| } |
| } // namespace |
| |
| // IN: |
| // - v0, v4 (input pixels) |
| // - v11 (zeroed register) |
| // OUT: |
| // - v0, v1, v2, v3, v4, v5, v6, v7 (reforged input columns) |
| // CLOBBERS: |
| // - None |
| #define FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV \ |
| { \ |
| vsliden_h_3_vv(v1, v0, v11); \ |
| vsliden_w_3_vv(v2, v0, v11); \ |
| vsliden_w_3_vv(v3, v1, v11); \ |
| vsliden_h_3_vv(v5, v4, v11); \ |
| vsliden_w_3_vv(v6, v4, v11); \ |
| vsliden_w_3_vv(v7, v5, v11); \ |
| } |
| |
| #define POST_PROCESS_ACONV_INT32_ACC_TO_INT8_ACC \ |
| { \ |
| vadd_w_vv_m(v48, v48, v35); \ |
| vadd_w_vv_m(v52, v52, v35); \ |
| vdmulh_w_rn_vv_m(v48, v48, v12); \ |
| vdmulh_w_rn_vv_m(v52, v52, v12); \ |
| vsha_w_r_vv_m(v48, v48, v16); \ |
| vsha_w_r_vv_m(v52, v52, v16); \ |
| vadd_w_vx_m(v48, v48, output_offset); \ |
| vadd_w_vx_m(v52, v52, output_offset); \ |
| vmin_w_vx_m(v48, v48, output_activation_max); \ |
| vmin_w_vx_m(v52, v52, output_activation_max); \ |
| vmax_w_vx_m(v48, v48, output_activation_min); \ |
| vmax_w_vx_m(v52, v52, output_activation_min); \ |
| vst_w_x_m(v48, &acc_out32[0]); \ |
| vst_w_x_m(v52, &acc_out32[32]); \ |
| for (int i = 0; i < 4; i++) { \ |
| acc_out8[0][i][0] = acc_out32[i * 16 + 0]; \ |
| acc_out8[0][i][2] = acc_out32[i * 16 + 1]; \ |
| acc_out8[0][i][1] = acc_out32[i * 16 + 2]; \ |
| acc_out8[0][i][3] = acc_out32[i * 16 + 3]; \ |
| acc_out8[1][i][0] = acc_out32[i * 16 + 4]; \ |
| acc_out8[1][i][2] = acc_out32[i * 16 + 5]; \ |
| acc_out8[1][i][1] = acc_out32[i * 16 + 6]; \ |
| acc_out8[1][i][3] = acc_out32[i * 16 + 7]; \ |
| acc_out8[0][i][4] = acc_out32[i * 16 + 8]; \ |
| acc_out8[0][i][6] = acc_out32[i * 16 + 9]; \ |
| acc_out8[0][i][5] = acc_out32[i * 16 + 10]; \ |
| acc_out8[0][i][7] = acc_out32[i * 16 + 11]; \ |
| acc_out8[1][i][4] = acc_out32[i * 16 + 12]; \ |
| acc_out8[1][i][6] = acc_out32[i * 16 + 13]; \ |
| acc_out8[1][i][5] = acc_out32[i * 16 + 14]; \ |
| acc_out8[1][i][7] = acc_out32[i * 16 + 15]; \ |
| } \ |
| } |
| |
| void ConvS8I3xD8( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int8_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int32_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int8_t* output_data) { |
| // Get parameters. |
| const int32_t input_offset = params.input_offset; // r = s(q - Z) |
| const int32_t neg_input_offset = -params.input_offset; // r = s(q - Z) |
| const int stride_width = params.stride_width; |
| const int stride_height = params.stride_height; |
| const int pad_width = params.padding_values.width; |
| const int pad_height = params.padding_values.height; |
| const int32_t output_offset = params.output_offset; |
| const int32_t output_activation_min = params.quantized_activation_min; |
| const int32_t output_activation_max = params.quantized_activation_max; |
| // Consistency check. |
| TFLITE_DCHECK_LE(output_activation_min, output_activation_max); |
| TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); |
| TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); |
| TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); |
| TFLITE_DCHECK_EQ(filter_shape.Dims(2), 3); |
| TFLITE_DCHECK_EQ(filter_shape.Dims(1), 3); |
| TFLITE_DCHECK_EQ(input_shape.Dims(3), 3); |
| const int batches = MatchingDim(input_shape, 0, output_shape, 0); |
| const int input_depth = input_shape.Dims(3); |
| const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); |
| if (bias_data) { |
| TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); |
| } |
| |
| // Check dimensions of the tensors. |
| const int input_height = input_shape.Dims(1); |
| const int input_width = input_shape.Dims(2); |
| const int filter_height = filter_shape.Dims(1); |
| const int filter_width = filter_shape.Dims(2); |
| const int filter_input_depth = filter_shape.Dims(3); |
| const int groups = input_depth / filter_input_depth; |
| TFLITE_DCHECK_NE(groups, 0); |
| TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0); |
| const int filters_per_group = output_depth / groups; |
| TFLITE_DCHECK_NE(filters_per_group, 0); |
| const int output_height = output_shape.Dims(1); |
| const int output_width = output_shape.Dims(2); |
| |
| union { |
| vconv_u8_t conv; |
| uint32_t raw; |
| } cmds; |
| cmds.conv.mode = 0; |
| cmds.conv.start = 0; |
| cmds.conv.stop = 2; |
| cmds.conv.sbias1 = input_offset; |
| cmds.conv.sdata1 = true; |
| cmds.conv.sbias2 = 0; |
| cmds.conv.sdata2 = true; |
| |
| // Reg Map: |
| // v0-v7 : input patches[0..7] |
| // v8-v10 : filter row 1 (registers used for aconv) |
| // v11 : vdup 0 used during vsliden |
| // v12-v15 : Swizzled Biases |
| // v16-v19 : Swizzled shift mulitpliers |
| // v24-v26 : filter row 2 (registers used for aconv) |
| // v30 : negative offset mask |
| // v34-v37 : Swizzled Biases |
| // v40-v42 : filter row 3 (registers used for aconv) |
| // v48-v55 : Accumulators for aconv |
| |
| int8_t acc_out8[2][4][8]; |
| int32_t acc_out32[64]; |
| int out_channel = 0; |
| const size_t swizzled_filter_data_size = output_depth * 3 * 3 * 4; |
| std::unique_ptr<int8_t> swizzled_filter_data(reinterpret_cast<int8_t*>( |
| ::aligned_alloc(32, swizzled_filter_data_size))); |
| int8_t* p_swizzled_filter_data = swizzled_filter_data.get(); |
| |
| PaddedFilter_N_H_W_M(filter_data, p_swizzled_filter_data, output_depth, |
| filter_height, filter_width, filter_input_depth); |
| |
| // structure of padded filter data : 1st row 0-8 channels 0-95 , 2nd row 0-8 |
| // channels 96-191, 3rd row 0-8 channels 192-287 |
| |
| do { |
| int32_t temp_data_shuffle[2][8]{0}; |
| |
| VectorSwizzle8(bias_data + out_channel, &temp_data_shuffle[0][0], |
| &temp_data_shuffle[1][0]); |
| vld_w_x(v35, &temp_data_shuffle[0][0]); |
| vld_w_x(v36, &temp_data_shuffle[1][0]); |
| vmv_v(v37, v35); |
| vmv_v(v38, v36); |
| |
| VectorSwizzle8(output_multiplier + out_channel, &temp_data_shuffle[0][0], |
| &temp_data_shuffle[1][0]); |
| vld_w_x(v12, &temp_data_shuffle[0][0]); |
| vld_w_x(v13, &temp_data_shuffle[1][0]); |
| vmv_v(v14, v12); |
| vmv_v(v15, v13); |
| |
| VectorSwizzle8(output_shift + out_channel, &temp_data_shuffle[0][0], |
| &temp_data_shuffle[1][0]); |
| vld_w_x(v16, &temp_data_shuffle[0][0]); |
| vld_w_x(v17, &temp_data_shuffle[1][0]); |
| vmv_v(v18, v16); |
| vmv_v(v19, v17); |
| vrsub_w_vx_m(v16, v16, 0); |
| vdup_b_x(v11, 0); // used for vsliden |
| |
| int8_t mask[32] = {0}; |
| for (int i = 24; i < 32; ++i) { |
| mask[i] = neg_input_offset; |
| } |
| vld_b_x(v30, mask); // mast to negate input offset |
| |
| int fil_channels_offset = out_channel / 8; |
| |
| // load filter this is done once per change in 8 channels |
| vld_b_x(v8, p_swizzled_filter_data + fil_channels_offset * 288); // row 1 |
| vld_b_x(v9, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 32); // row 1 |
| vld_b_x(v10, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 64); // row 1 |
| |
| vld_b_x(v24, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 96); // row 2 |
| vld_b_x(v25, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 128); // row 2 |
| vld_b_x(v26, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 160); // row 2 |
| |
| vld_b_x(v40, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 192); // row 3 |
| vld_b_x(v41, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 224); // row 3 |
| vld_b_x(v42, |
| p_swizzled_filter_data + fil_channels_offset * 288 + 256); // row 3 |
| |
| for (int batch = 0; batch < batches; ++batch) { |
| int8_t* p_output = output_data + |
| (batch * output_height * output_width * output_depth) + |
| out_channel; |
| const int8_t* p_input = |
| input_data + (batch * input_height * input_width * input_depth); |
| for (int out_y = 0; out_y + 2 < output_height; out_y += 2) { |
| const int in_y_origin = (out_y * stride_height); |
| for (int out_x = 0; out_x + 4 < output_width; out_x += 4) { |
| const int in_x_origin = (out_x * stride_width); |
| |
| vdup_w_x_m(v48, 0); |
| vdup_w_x_m(v52, 0); |
| |
| acset_v(v48, v48); |
| |
| // inputs row 0 and row 2 |
| vld_b_x(v0, p_input + (in_y_origin * input_width * input_depth) + |
| (in_x_origin * input_depth)); |
| vld_b_x(v4, p_input + |
| ((in_y_origin + 2) * input_width * input_depth) + |
| (in_x_origin * input_depth)); |
| |
| // explaining data slide strategy |
| // v0 loads 10 RGB pixels of Row 0 ( which turn out to be first 30 |
| // values) 0 1 2 3 4 5 6 7 8 9 first vslide corresponds to outx + 1 2 |
| // 3 4 5 6 7 8 9 ( stride == 2) 2nd vslide corresponds to outx + 2 4 5 |
| // 6 7 8 9 ( stride == 2) 2nd vslide corresponds to outx + 3 6 7 8 9 ( |
| // stride == 2) |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV; |
| |
| aconv_vxv(v48, v0, cmds, v8); // filter r1 |
| |
| // inputs row 1 and row 3 |
| vld_b_x(v0, p_input + |
| ((in_y_origin + 1) * input_width * input_depth) + |
| (in_x_origin * input_depth)); |
| vld_b_x(v4, p_input + |
| ((in_y_origin + 3) * input_width * input_depth) + |
| (in_x_origin * input_depth)); |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV; |
| aconv_vxv(v48, v0, cmds, v24); // filter r2 |
| |
| // row 2 and row4 |
| vld_b_x(v0, p_input + |
| ((in_y_origin + 2) * input_width * input_depth) + |
| (in_x_origin * input_depth)); |
| vld_b_x(v4, p_input + |
| ((in_y_origin + 4) * input_width * input_depth) + |
| (in_x_origin * input_depth)); |
| |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV; |
| aconv_vxv(v48, v0, cmds, v40); // filter r3 |
| |
| vcget(v48); |
| actr_v(v48, v48); |
| vcget(v48); |
| |
| // (x0,y0) (x0, y1) |
| // v48 (0 2 1 3 0 2 1 3) -- even registers |
| // v49 (4 6 5 7 4 6 5 7) -- odd registers |
| POST_PROCESS_ACONV_INT32_ACC_TO_INT8_ACC; |
| |
| for (int i = 0; i < 4; ++i) { |
| memcpy((p_output + ((out_x + i) * output_depth) + |
| (out_y * output_width * output_depth)), |
| &acc_out8[0][i][0], 8 * sizeof(int8_t)); |
| memcpy((p_output + ((out_x + i) * output_depth) + |
| ((out_y + 1) * output_width * output_depth)), |
| &acc_out8[1][i][0], 8 * sizeof(int8_t)); |
| } |
| } |
| |
| int in_x_origin = (output_width - 4) * stride_width; |
| vdup_w_x_m(v48, 0); |
| vdup_w_x_m(v52, 0); |
| acset_v(v48, v48); |
| |
| vld_b_l_xx(v0, |
| p_input + (in_y_origin * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| 24); |
| vld_b_l_xx(v4, |
| p_input + ((in_y_origin + 2) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| 24); |
| vor_vv(v0, v0, v30); |
| vor_vv(v4, v4, v30); |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV; |
| aconv_vxv(v48, v0, cmds, v8); // filter r1 |
| |
| // inputs row 1 and row 3 |
| vld_b_l_xx(v0, |
| p_input + ((in_y_origin + 1) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| 24); |
| vld_b_l_xx(v4, |
| p_input + ((in_y_origin + 3) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| 24); |
| vor_vv(v0, v0, v30); |
| vor_vv(v4, v4, v30); |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV; |
| aconv_vxv(v48, v0, cmds, v24); // filter r2 |
| |
| // row 2 and row4 |
| vld_b_l_xx(v0, |
| p_input + ((in_y_origin + 2) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| 24); |
| vld_b_l_xx(v4, |
| p_input + ((in_y_origin + 4) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| 24); |
| vor_vv(v0, v0, v30); |
| vor_vv(v4, v4, v30); |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV; |
| aconv_vxv(v48, v0, cmds, v40); // filter r3 |
| |
| vcget(v48); |
| actr_v(v48, v48); |
| vcget(v48); |
| |
| POST_PROCESS_ACONV_INT32_ACC_TO_INT8_ACC; |
| |
| for (int i = 0; i < 4; ++i) { |
| memcpy((p_output + ((output_width - 4 + i) * output_depth) + |
| (out_y * output_width * output_depth)), |
| &acc_out8[0][i][0], 8 * sizeof(int8_t)); |
| |
| memcpy((p_output + ((output_width - 4 + i) * output_depth) + |
| ((out_y + 1) * output_width * output_depth)), |
| &acc_out8[1][i][0], 8 * sizeof(int8_t)); |
| } |
| } |
| int load_until = 32; |
| bool negate_offset = false; |
| for (int out_x = 0; out_x + 4 <= output_width; out_x += 4) { |
| const int in_x_origin = (out_x * stride_width); |
| const int in_y_origin = (output_height - 2) * stride_height; |
| |
| if (out_x + 4 == output_width) { |
| load_until = 24; |
| negate_offset = true; |
| } |
| |
| vdup_w_x_m(v48, 0); |
| vdup_w_x_m(v52, 0); |
| acset_v(v48, v48); |
| |
| // inputs row 0 and row 2 |
| vld_b_l_xx(v0, |
| p_input + (in_y_origin * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| load_until); |
| vld_b_l_xx(v4, |
| p_input + ((in_y_origin + 2) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| load_until); |
| if (negate_offset) { |
| vor_vv(v0, v0, v30); |
| vor_vv(v4, v4, v30); |
| } |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV |
| aconv_vxv(v48, v0, cmds, v8); // filter r1 |
| |
| // inputs row 1 and row 3 |
| vld_b_l_xx(v0, |
| p_input + ((in_y_origin + 1) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| load_until); |
| vld_b_l_xx(v4, |
| p_input + ((in_y_origin + 3) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| load_until); |
| if (negate_offset) { |
| vor_vv(v0, v0, v30); |
| vor_vv(v4, v4, v30); |
| } |
| FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV; |
| aconv_vxv(v48, v0, cmds, v24); // filter r2 |
| |
| // row 2 and row4 |
| vld_b_l_xx(v0, |
| p_input + ((in_y_origin + 2) * input_width * input_depth) + |
| (in_x_origin * input_depth), |
| load_until); |
| vdup_b_x_m(v4, neg_input_offset); |
| if (negate_offset) { |
| vor_vv(v0, v0, v30); |
| vor_vv(v4, v4, v30); |
| } |
| vsliden_h_3_vv(v1, v0, v11); |
| vsliden_w_3_vv(v2, v0, v11); |
| vsliden_w_3_vv(v3, v1, v11); |
| aconv_vxv(v48, v0, cmds, v40); // filter r3 |
| |
| vcget(v48); |
| actr_v(v48, v48); |
| vcget(v48); |
| POST_PROCESS_ACONV_INT32_ACC_TO_INT8_ACC; |
| |
| for (int i = 0; i < 4; ++i) { |
| memcpy((p_output + ((out_x + i) * output_depth) + |
| ((output_height - 2) * output_width * output_depth)), |
| &acc_out8[0][i][0], 8 * sizeof(int8_t)); |
| |
| memcpy((p_output + ((out_x + i) * output_depth) + |
| ((output_height - 1) * output_width * output_depth)), |
| &acc_out8[1][i][0], 8 * sizeof(int8_t)); |
| } |
| } |
| } |
| out_channel += 8; |
| } while (out_channel < output_depth); |
| } |
| |
| #undef FORGING_4_INPUT_COLUMNS_INTO_V0_V7_FOR_ACONV |
| #undef POST_PROCESS_ACONV_INT32_ACC_TO_INT8_ACC |
| |
| } // namespace kelvin::opt |