blob: c4ee35a4f1c4aa1424a5ec7cd0e8e54f4b87f095 [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "crt/kelvin.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
#include "tensorflow/lite/kernels/internal/runtime_shape.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tflm/opt/opt.h"
namespace kelvin::opt {
void Swizzle(const int32_t* input, int32_t* output, int N) {
const int32_t(&in)[N] = *(int32_t(*)[N])input;
int32_t(&out)[N * 4] = *(int32_t(*)[N * 4]) output;
// Convert to accumulator swizzle pattern.
for (int i = 0; i < N / 8; ++i) {
int32_t* out0 = out + i * 32 + 0;
int32_t* out1 = out + i * 32 + 16;
int32_t* out2 = out + i * 32 + 8;
int32_t* out3 = out + i * 32 + 24;
for (int j = 0; j < 4; ++j) {
const int32_t* p_in = in + i * 8;
for (int k = 0; k < 2; ++k) {
*out0++ = *p_in++;
*out1++ = *p_in++;
*out2++ = *p_in++;
*out3++ = *p_in++;
}
}
}
}
void DWConv2DKelvin_d32(
const tflite::DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
const int8_t* input_data, const tflite::RuntimeShape& filter_shape,
const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
const int32_t* bias_data, const tflite::RuntimeShape& output_shape,
int8_t* output_data
) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int32_t input_offset = params.input_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
int32_t swizzled_bias_data[32 * 4];
int32_t swizzled_shift_multi[32 * 4];
int32_t swizzled_output_multi[32 * 4];
for (int in_channel = 0; in_channel + 32 <= input_depth; in_channel += 32) {
const int output_channel = in_channel;
Swizzle(bias_data + output_channel, swizzled_bias_data, 32);
Swizzle(output_multiplier + output_channel, swizzled_output_multi, 32);
Swizzle(output_shift + output_channel, swizzled_shift_multi, 32);
vld_w_x_m(v20, swizzled_bias_data);
vld_w_x_m(v24, swizzled_output_multi);
vld_w_x_m(v28, swizzled_shift_multi);
vrsub_w_vx_m(v28, v28, 0);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + filter_y;
if ((in_y < 0) || (in_y >= input_height)) {
continue;
}
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + filter_x;
if ((in_x < 0) || (in_x >= input_width)) {
continue;
}
vld_b_x(v0, &input_data[tflite::Offset(input_shape, batch, in_y,
in_x, in_channel)]); // xp
vld_b_x(v4, &filter_data[tflite::Offset(filter_shape, 0, filter_y,
filter_x, in_channel)]);
vaddw_h_vx(v0, v0, 0);
vadd_h_vx(v0, v0, static_cast<int16_t>(input_offset));
vadd_h_vx(v1, v1,
static_cast<int16_t>(input_offset)); // v0 v1 input
vaddw_h_vx(v4, v4, static_cast<int16_t>(0));
vmulw_w_vv(v8, v0, v4);
vmulw_w_vv(v10, v1, v5);
vadd_w_vv_m(v48, v48, v8);
}
}
vadd_w_vv_m(v48, v48, v20); // add bias
vdmulh_w_r_vv_m(v48, v48, v24);
vsha_w_r_vv_m(v48, v48, v28);
vadd_w_vx_m(v48, v48, output_offset);
vmax_w_vx_m(v48, v48, output_activation_min);
vmin_w_vx_m(v48, v48, output_activation_max);
vsraqs_b_vx(v48, v48, 0);
vst_b_x(v48, &output_data[tflite::Offset(output_shape, batch, out_y,
out_x, output_channel)]);
}
}
}
}
}
void DepthwiseConv2DKelvin(
const tflite::DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
const int8_t* input_data, const tflite::RuntimeShape& filter_shape,
const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
const int32_t* bias_data, const tflite::RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
// TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32_t input_offset = params.input_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
if (depth_multiplier == 1 && pad_height < 2 && pad_width < 2 &&
dilation_height_factor == 1 && dilation_width_factor == 1 &&
stride_height == 1 && stride_width == 1 && output_depth % 32 == 0) {
DWConv2DKelvin_d32(params, output_multiplier, output_shift, input_shape,
input_data, filter_shape, filter_data, bias_shape,
bias_data, output_shape, output_data);
return;
}
tflite::reference_integer_ops::DepthwiseConvPerChannel(
params, output_multiplier, output_shift, input_shape, input_data,
filter_shape, filter_data, bias_shape, bias_data, output_shape,
output_data);
return;
}
} // namespace kelvin::opt