blob: c7db40789e7dfbe51ea2b52a850c06e912e784bd [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Depthwise convolution based on Kelvin ops
// Data types: input: s16, filter: s8, bias s64
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
#include "tflm/opt/conv_util.h"
namespace kelvin::opt {
namespace {
void DepthwiseConvS16K3x1(
const tflite::DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
int16_t* output_data) {
const int16_t* activations = input_data;
const int8_t* weights = filter_data;
const int64_t* biases = bias_data;
int channels = filter_shape.Dims(3);
int frames = input_shape.Dims(2);
int dilation = params.dilation_width_factor;
const int32_t* output_mult = output_multiplier;
int32_t output_activation_min = params.quantized_activation_min;
int32_t output_activation_max = params.quantized_activation_max;
int16_t* output = output_data;
for (int c = 0; c + 32 <= channels; c += 32) {
// Load weights and interleave into correct order [v58-v63].
// Because there are more activations than weights, interleave weights.
const int8_t* local_weights0 = weights + c;
vld_b_p_xx(v0, local_weights0, channels);
vaddw_h_vx(v48, v0, 0);
vzip_h_vv(v58, v48, v49);
vld_b_p_xx(v1, local_weights0, channels);
vaddw_h_vx(v50, v1, 0);
vzip_h_vv(v60, v50, v51);
vld_b_x(v2, local_weights0);
vaddw_h_vx(v52, v2, 0);
vzip_h_vv(v62, v52, v53);
// Assume biases fit in 32-bit. This assumption is verified offline.
// Load biases and swizzle [v52-v55].
int32_t local_biases[32];
for (int j = 0; j < 32; j++) {
local_biases[j] = static_cast<int32_t>(biases[c + j]);
}
vld_w_x_m(v4, local_biases);
vzip_w_vv(v52, v4, v5);
vzip_w_vv(v54, v6, v7);
const int32_t step = dilation * channels;
const int32_t* local_output_mult = output_mult + c;
const int32_t* local_output_shift = output_shift + c;
for (int d = 0; d < dilation; d++) {
// Accumulators will be [v48 - v51].
const int16_t* local_activations0 = activations + (d * channels) + c;
const int16_t* local_activations1 = local_activations0 + 16;
int16_t* local_output = output + (d * channels) + c;
// Registers [v0-v5 will be for loading activations]
// Preload for valid padding:
vld_h_p_xx(v0, local_activations0, step);
vld_h_p_xx(v1, local_activations1, step);
vld_h_p_xx(v2, local_activations0, step);
vld_h_p_xx(v3, local_activations1, step);
int frames_idx = (2 * dilation) + d;
int32_t accumulators[32];
for (; frames_idx < frames; frames_idx += dilation) {
vld_h_p_xx(v4, local_activations0, step);
vld_h_p_xx(v5, local_activations1, step);
vmulw_w_vv(v48, v58, v0); // Clobber accumulator
vmulw_w_vv(v50, v59, v1); // Clobber accumulator
vadd_w_vv_m(v48, v48, v52); // Add bias.
vmulw_w_vv(v40, v60, v2);
vmulw_w_vv(v42, v61, v3);
vadd_w_vv_m(v48, v48, v40);
vmulw_w_vv(v44, v62, v4);
vmulw_w_vv(v46, v63, v5);
vadd_w_vv_m(v48, v48, v44);
vzip_w_vv(v48, v48, v49); // Swizzle accumulators
vzip_w_vv(v50, v50, v51);
vst_w_x_m(v48, accumulators); // Store accumulators
// Output pipeline in scalar, to preserve bit accuracy with the ARM CPU
// implementation.
for (int i = 0; i < 32; i++) {
int32_t result = tflite::MultiplyByQuantizedMultiplier(
static_cast<int64_t>(accumulators[i]), local_output_mult[i],
local_output_shift[i]);
local_output[i] = static_cast<int16_t>(
std::clamp(result, output_activation_min, output_activation_max));
}
// Slide registers
vmvp_vv(v0, v2, v3);
vmvp_vv(v2, v4, v5);
local_output += step;
}
}
}
// TODO(derekjchow): Handle channels % 32 cases.
// Break it down into:
// - one loop looking for 16 byte stripes
// - one final loop handling remainder
}
// generic implementation based on Kelvin ops
void DepthwiseConvS16Generic(
const tflite::DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
int16_t* output_data) {
// TBD: Use Kelvin implementation to replace the below
tflite::reference_integer_ops::DepthwiseConvPerChannel(
params, output_multiplier, output_shift, input_shape, input_data,
filter_shape, filter_data, bias_shape, bias_data, output_shape,
output_data);
return;
}
} // namespace
void DepthwiseConvS16(
const tflite::DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
const int16_t* input_data, const tflite::RuntimeShape& filter_shape,
const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
const int64_t* bias_data, const tflite::RuntimeShape& output_shape,
int16_t* output_data) {
// Get parameters.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
if (params.padding_type == tflite::PaddingType::kValid && stride_width == 1 &&
stride_height == 1 && dilation_width_factor == 1 &&
dilation_height_factor == 1) {
// generic implementation by default
auto fn = DepthwiseConvS16Generic;
// special case of filter size 3x1
if (filter_height == 1 && filter_width == 3) {
fn = DepthwiseConvS16K3x1;
}
fn(params, output_multiplier, output_shift, input_shape, input_data,
filter_shape, filter_data, bias_shape, bias_data, output_shape,
output_data);
return;
}
// Use reference implementation
tflite::reference_integer_ops::DepthwiseConvPerChannel(
params, output_multiplier, output_shift, input_shape, input_data,
filter_shape, filter_data, bias_shape, bias_data, output_shape,
output_data);
}
} // namespace kelvin::opt