blob: 80f3a4f90e69aa531f8e3fc87332cea96703aaa4 [file] [log] [blame]
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "tflm/opt/conv_util.h"
namespace kelvin::opt {
namespace {
void JumptableSwizzle(const int32_t* input, int32_t* output, int n) {
switch (n) {
case 32:
output[7] = input[28];
output[15] = input[30];
output[23] = input[29];
output[31] = input[31];
case 28:
output[6] = input[24];
output[14] = input[26];
output[22] = input[25];
output[30] = input[27];
case 24:
output[5] = input[20];
output[13] = input[22];
output[21] = input[21];
output[29] = input[23];
case 20:
output[4] = input[16];
output[12] = input[18];
output[20] = input[17];
output[28] = input[19];
case 16:
output[27] = input[15];
output[19] = input[13];
output[11] = input[14];
output[3] = input[12];
case 12:
output[2] = input[8];
output[10] = input[10];
output[18] = input[9];
output[26] = input[11];
case 8:
output[1] = input[4];
output[9] = input[6];
output[17] = input[5];
output[25] = input[7];
case 4:
output[0] = input[0];
output[8] = input[2];
output[16] = input[1];
output[24] = input[3];
}
}
} // namespace
void ConvPerChannelD1(
const tflite::ConvParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const tflite::RuntimeShape& input_shape,
const int8_t* input_data, const tflite::RuntimeShape& filter_shape,
const int8_t* filter_data, const tflite::RuntimeShape& bias_shape,
const int32_t* bias_data, const tflite::RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
const int32_t input_offset = params.input_offset; // r = s(q - Z)
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int32_t output_offset = params.output_offset;
// Set min and max value of the output.
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Consistency check.
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = tflite::MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = input_shape.Dims(3);
const int output_depth = tflite::MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
// Check dimensions of the tensors.
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int filter_input_depth = filter_shape.Dims(3);
const int groups = input_depth / filter_input_depth;
TFLITE_DCHECK_NE(groups, 0);
TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
const int filters_per_group = output_depth / groups;
TFLITE_DCHECK_NE(filters_per_group, 0);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
// Scratch pads to juggle data
const size_t swizzled_filter_data_size = 32 * filter_height * filter_width;
std::unique_ptr<int8_t> swizzled_filter_data(
reinterpret_cast<int8_t*>(
::aligned_alloc(32, swizzled_filter_data_size)));
int32_t swizzled_bias_data[32];
int32_t swizzled_output_multiplier[32];
int32_t swizzled_output_shift[32];
for (int out_channel = 0; out_channel < output_depth; out_channel += 32) {
int n_channels = std::min(32, output_depth - out_channel);
// Transpose filter for easy loading
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int i = 0; i < n_channels; i++) {
int filter_location =
(filter_y * filter_width * 32) + (filter_x * 32) + i;
swizzled_filter_data.get()[filter_location] = filter_data[
tflite::Offset(filter_shape, out_channel + i, filter_y, filter_x,
0)];
}
}
}
if (bias_data) {
JumptableSwizzle(bias_data + out_channel, swizzled_bias_data, n_channels);
vld_w_x_m(v52, swizzled_bias_data);
} else {
vdup_w_x_m(v52, 0);
}
JumptableSwizzle(output_multiplier + out_channel,
swizzled_output_multiplier, n_channels);
vld_w_x_m(v56, swizzled_output_multiplier);
JumptableSwizzle(output_shift + out_channel, swizzled_output_shift,
n_channels);
vld_w_x_m(v60, swizzled_output_shift);
vrsub_w_vx_m(v60, v60, 0);
int8_t* local_output_data = output_data + out_channel;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int out_x = 0; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
// Accumulator loop
vmv_v_m(v48, v52);
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
if ((in_y < 0) || (in_y >= input_height)) {
continue;
}
const int8_t* local_input_data = input_data +
tflite::Offset(input_shape, batch, in_y, 0, 0);
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
if ((in_x < 0) || (in_x >= input_width)) {
continue;
}
int16_t input_val = local_input_data[in_x];
int16_t input_val16 = static_cast<int16_t>(
input_val + input_offset);
vdup_h_x(v32, input_val16);
const int8_t* local_filter_data = swizzled_filter_data.get() +
(filter_y * filter_width * 32) + (filter_x * 32);
vld_b_l_xx(v0, local_filter_data, n_channels);
vaddw_h_vx(v0, v0, 0);
// Multiply
vmulw_w_vv(v4, v0, v32);
vmulw_w_vv(v6, v1, v32);
// Accumulate
vadd_w_vv_m(v48, v48, v4);
}
}
// Output pipeline
vdmulh_w_rn_vv_m(v48, v48, v56);
vsha_w_r_vv_m(v48, v48, v60);
vadd_w_vx_m(v48, v48, output_offset);
vmin_w_vx_m(v48, v48, output_activation_max);
vmax_w_vx_m(v48, v48, output_activation_min);
vsraqs_b_vx(v48, v48, 0);
vst_b_l_xx(v48, output_data, n_channels);
output_data += output_depth;
}
}
}
}
}
} // namespace kelvin::opt