| /* |
| * Copyright 2023 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef TFLM_OPT_OPT_H_ |
| #define TFLM_OPT_OPT_H_ |
| |
| /* clang-format off */ |
| #include <cstring> |
| #include "tensorflow/lite/kernels/internal/runtime_shape.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| /* clang-format on */ |
| |
| namespace kelvin::opt { |
| void *memcpy(void *dst, const void *src, size_t n); |
| void elementwise_add_s8(const int8_t* input1, const int8_t* input2, |
| const int32_t input1_offset, const int32_t input1_mult, |
| const int32_t input1_shift, const int32_t input2_offset, |
| const int32_t input2_mult, const int32_t input2_shift, |
| const int32_t left_shift, int8_t* output, |
| const int32_t output_offset, const int32_t output_mult, |
| const int32_t output_shift, |
| const int32_t output_activation_min, |
| const int32_t output_activation_max, |
| const int32_t block_size); |
| void elementwise_add_s16(const int16_t* input1, const int16_t* input2, |
| const int32_t input1_offset, const int32_t input1_mult, |
| const int32_t input1_shift, |
| const int32_t input2_offset, const int32_t input2_mult, |
| const int32_t input2_shift, const int32_t left_shift, |
| int16_t* output, const int32_t output_offset, |
| const int32_t output_mult, const int32_t output_shift, |
| const int32_t output_activation_min, |
| const int32_t output_activation_max, |
| const int32_t block_size); |
| void elementwise_add_s32(const int32_t* input1, const int32_t* input2, |
| int32_t* output, const int32_t output_activation_min, |
| const int32_t output_activation_max, |
| const int32_t block_size); |
| void leaky_relu_s8(const int8_t* input, int8_t* output, |
| const int32_t block_size, const int32_t input_zero_point, |
| const int32_t output_zero_point, |
| const int32_t output_multiplier_alpha, |
| const int32_t output_shift_alpha, |
| const int32_t output_multiplier_identity, |
| const int32_t output_shift_identity); |
| void leaky_relu_s16(const int16_t* input, int16_t* output, |
| const int32_t block_size, const int32_t input_zero_point, |
| const int32_t output_zero_point, |
| const int32_t output_multiplier_alpha, |
| const int32_t output_shift_alpha, |
| const int32_t output_multiplier_identity, |
| const int32_t output_shift_identity); |
| void conv_per_channel_b32( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int16_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int32_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int16_t* output_data); |
| |
| // Top level conv function, will invoke correct variant below. |
| void conv_per_channel_b64( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int16_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int64_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int16_t* output_data); |
| void conv_per_channel_b64_1x1( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int16_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int64_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int16_t* output_data); |
| void conv_per_channel_b64_filter1xn_non_group( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int16_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int64_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int16_t* output_data); |
| void conv_per_channel_b64_filter1xn_group( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int16_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int64_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int16_t* output_data); |
| void conv_per_channel_b64_generic( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int16_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int64_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int16_t* output_data); |
| |
| void conv_per_channel_b8( |
| const tflite::ConvParams& params, const int32_t* output_multiplier, |
| const int32_t* output_shift, const tflite::RuntimeShape& input_shape, |
| const int8_t* input_data, const tflite::RuntimeShape& filter_shape, |
| const int8_t* filter_data, const tflite::RuntimeShape& bias_shape, |
| const int32_t* bias_data, const tflite::RuntimeShape& output_shape, |
| int8_t* output_data); |
| void DepthwiseConv2DKelvinS16K3x1( |
| const int16_t* activations, const int8_t* weights, const int64_t* biases, |
| int channels, int frames, int dilation, const int32_t* output_mult, |
| const int32_t* output_shift, int32_t output_activation_min, |
| int32_t output_activation_max, int16_t* output); |
| void MaxPoolGeneric(const tflite::PoolParams& params, const tflite::RuntimeShape& input_shape, |
| const int8_t* input_data, const tflite::RuntimeShape& output_shape, |
| int8_t* output_data); |
| |
| } // namespace kelvin::opt |
| |
| #endif // TFLM_OPT_OPT_H_ |