blob: 96ad4b89808d802ffc52ed2ee2f6d01fe9fc9d03 [file] [log] [blame]
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
load("@kelvin_sw//benchmarks:benchmarks.bzl", "kelvin_benchmark_simulator", "kelvin_benchmark_devices")
kelvin_benchmark_simulator(
name = "person_detection_benchmark_simulator",
model = "//quant_models:person_detection.tflite",
iterations = 2,
hw_test_size = "medium",
iss_test_size = "medium",
)
kelvin_benchmark_simulator(
name = "mobilenet_v1_075_224_benchmark_simulator",
model = "//quant_models:mobilenet_v1_0.75_224_int8_dummy.tflite",
iterations = 3,
iss_test_size = "large",
)
kelvin_benchmark_simulator(
name = "mobilenet_v1_050_224_benchmark_simulator",
model = "//quant_models:mobilenet_v1_0.5_224_int8_dummy.tflite",
iterations = 3,
iss_test_size = "enormous",
)
kelvin_benchmark_simulator(
name = "mobilenet_v1_025_224_benchmark_simulator",
model = "//quant_models:mobilenet_v1_0.25_224_int8_dummy.tflite",
iterations = 3,
iss_test_size = "large",
)
kelvin_benchmark_simulator(
name = "mobilenet_v2_025_224_benchmark_simulator",
model = "//quant_models:mobilenet_v2_0.25_224_int8_dummy.tflite",
iterations = 3,
iss_test_size = "large",
)
kelvin_benchmark_simulator(
name = "mobilenet_v2_050_224_benchmark_simulator",
model = "//quant_models:mobilenet_v2_0.50_224_int8_dummy.tflite",
iterations = 3,
iss_test_size = "large",
)
# Builds both ASIC and FPGA.
kelvin_benchmark_devices(
name = "person_detection_benchmark_device",
model = "//quant_models:person_detection.tflite",
iterations = 2,
)
kelvin_benchmark_devices(
name = "mobilenet_v1_075_224_benchmark_device",
model = "//quant_models:mobilenet_v1_0.75_224_int8_dummy.tflite",
iterations = 3,
)
kelvin_benchmark_devices(
name = "mobilenet_v1_050_224_benchmark_device",
model = "//quant_models:mobilenet_v1_0.5_224_int8_dummy.tflite",
iterations = 3,
)
kelvin_benchmark_devices(
name = "mobilenet_v1_025_224_benchmark_device",
model = "//quant_models:mobilenet_v1_0.25_224_int8_dummy.tflite",
iterations = 3,
)
kelvin_benchmark_devices(
name = "mobilenet_v2_025_224_benchmark_device",
model = "//quant_models:mobilenet_v2_0.25_224_int8_dummy.tflite",
iterations = 3,
)
kelvin_benchmark_devices(
name = "mobilenet_v2_050_224_benchmark_device",
model = "//quant_models:mobilenet_v2_0.50_224_int8_dummy.tflite",
iterations = 3,
)
kelvin_benchmark_simulator(
name = "mlperf_tiny_image_classification_benchmark_simulator",
model = "@mlperf_tiny//:benchmark/training/image_classification/trained_models/pretrainedResnet_quant.tflite",
iterations = 1,
)
kelvin_benchmark_devices(
name = "mlperf_tiny_image_classification_benchmark_device",
model = "@mlperf_tiny//:benchmark/training/image_classification/trained_models/pretrainedResnet_quant.tflite",
iterations = 1,
)
kelvin_benchmark_simulator(
name = "mlperf_tiny_anomaly_detection_benchmark_simulator",
model = "@mlperf_tiny//:benchmark/training/anomaly_detection/trained_models/ad01_int8.tflite",
iterations = 1,
)
kelvin_benchmark_devices(
name = "mlperf_tiny_anomaly_detection_benchmark_device",
model = "@mlperf_tiny//:benchmark/training/anomaly_detection/trained_models/ad01_int8.tflite",
iterations = 1,
)
kelvin_benchmark_simulator(
name = "mlperf_tiny_visual_wake_words_benchmark_simulator",
model = "@mlperf_tiny//:benchmark/training/visual_wake_words/trained_models/vww_96_int8.tflite",
iterations = 1,
)
kelvin_benchmark_devices(
name = "mlperf_tiny_visual_wake_words_benchmark_device",
model = "@mlperf_tiny//:benchmark/training/visual_wake_words/trained_models/vww_96_int8.tflite",
iterations = 1,
)
kelvin_benchmark_simulator(
name = "mlperf_tiny_keyword_spotting_benchmark_simulator",
model = "@mlperf_tiny//:benchmark/training/keyword_spotting/trained_models/kws_ref_model.tflite",
iterations = 1,
)
kelvin_benchmark_devices(
name = "mlperf_tiny_keyword_spotting_benchmark_device",
model = "@mlperf_tiny//:benchmark/training/keyword_spotting/trained_models/kws_ref_model.tflite",
iterations = 1,
)