| /* Copyright 2023 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include "signal/src/pcan_argc_fixed.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/flatbuffer_utils.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| #include "tensorflow/lite/micro/micro_context.h" |
| |
| namespace tflite { |
| namespace tflm_signal { |
| // TODO(b/286250473): remove namespace once de-duped libraries above |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kNoiseEstimateTensor = 1; |
| constexpr int kGainLutTensor = 2; |
| constexpr int kOutputTensor = 0; |
| |
| // Indices into the init flexbuffer's vector. |
| // The parameter's name is in the comment that follows. |
| // Elements in the vectors are ordered alphabetically by parameter name. |
| constexpr int kSnrShiftIndex = 0; // 'snr_shift' |
| |
| struct TfLitePcanParams { |
| int snr_shift; |
| }; |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| auto* params = static_cast<TfLitePcanParams*>( |
| context->AllocatePersistentBuffer(context, sizeof(TfLitePcanParams))); |
| |
| tflite::FlexbufferWrapper fbw(reinterpret_cast<const uint8_t*>(buffer), |
| length); |
| params->snr_shift = fbw.ElementAsInt32(kSnrShiftIndex); |
| return params; |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* noise_estimate = |
| micro_context->AllocateTempInputTensor(node, kNoiseEstimateTensor); |
| TF_LITE_ENSURE(context, noise_estimate != nullptr); |
| TfLiteTensor* gain_lut = |
| micro_context->AllocateTempInputTensor(node, kGainLutTensor); |
| TF_LITE_ENSURE(context, gain_lut != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(noise_estimate), 1); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(gain_lut), 1); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(output), 1); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteUInt32); |
| TF_LITE_ENSURE_TYPES_EQ(context, noise_estimate->type, kTfLiteUInt32); |
| TF_LITE_ENSURE_TYPES_EQ(context, gain_lut->type, kTfLiteInt16); |
| TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt32); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| micro_context->DeallocateTempTfLiteTensor(noise_estimate); |
| micro_context->DeallocateTempTfLiteTensor(gain_lut); |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = reinterpret_cast<TfLitePcanParams*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| const TfLiteEvalTensor* noise_estimate = |
| tflite::micro::GetEvalInput(context, node, kNoiseEstimateTensor); |
| TF_LITE_ENSURE(context, noise_estimate != nullptr); |
| const TfLiteEvalTensor* gain_lut = |
| tflite::micro::GetEvalInput(context, node, kGainLutTensor); |
| TF_LITE_ENSURE(context, gain_lut != nullptr); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| const uint32_t* input_data = tflite::micro::GetTensorData<uint32_t>(input); |
| const uint32_t* noise_estimate_data = |
| tflite::micro::GetTensorData<uint32_t>(noise_estimate); |
| const int16_t* gain_lut_data = |
| tflite::micro::GetTensorData<int16_t>(gain_lut); |
| uint32_t* output_data = tflite::micro::GetTensorData<uint32_t>(output); |
| |
| int num_channels = input->dims->data[0]; |
| |
| size_t output_byte_size; |
| TF_LITE_ENSURE_OK( |
| context, tflite::TfLiteEvalTensorByteLength(output, &output_byte_size)); |
| |
| memcpy(output_data, input_data, output_byte_size); |
| |
| tflite::tflm_signal::ApplyPcanAutoGainControlFixed( |
| gain_lut_data, params->snr_shift, noise_estimate_data, output_data, |
| num_channels); |
| return kTfLiteOk; |
| } |
| |
| TFLMRegistration* Register_PCAN() { |
| static TFLMRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval); |
| return &r; |
| } |
| |
| } // namespace tflm_signal |
| } // namespace tflite |