blob: f837d9322bf34c4a1890523d21c5360efa0256c5 [file] [log] [blame]
/*
* Generic PHY Management code
* Based loosely off of Linux's PHY Lib
*
* Copyright 2011 Freescale Semiconductor, Inc.
* author Andy Fleming
* Copyright 2020, HENSOLDT Cyber GmbH
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "common.h"
#include "fec_mxc.h"
#include "miiphy.h"
#include "phy.h"
#include <stdlib.h>
#include <string.h>
#include <errno.h>
/* Generic PHY support and helper functions */
/**
* genphy_config_advert - sanitize and advertise auto-negotation parameters
* @phydev: target phy_device struct
*
* Description: Writes MII_ADVERTISE with the appropriate values,
* after sanitizing the values to make sure we only advertise
* what is supported. Returns < 0 on error, 0 if the PHY's advertisement
* hasn't changed, and > 0 if it has changed.
*/
static int genphy_config_advert(struct phy_device *phydev)
{
u32 advertise;
int oldadv, adv;
int err, changed = 0;
/* Only allow advertising what
* this PHY supports */
phydev->advertising &= phydev->supported;
advertise = phydev->advertising;
/* Setup standard advertisement */
oldadv = adv = phy_read(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE);
if (adv < 0) {
return adv;
}
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
if (advertise & ADVERTISED_10baseT_Half) {
adv |= ADVERTISE_10HALF;
}
if (advertise & ADVERTISED_10baseT_Full) {
adv |= ADVERTISE_10FULL;
}
if (advertise & ADVERTISED_100baseT_Half) {
adv |= ADVERTISE_100HALF;
}
if (advertise & ADVERTISED_100baseT_Full) {
adv |= ADVERTISE_100FULL;
}
if (advertise & ADVERTISED_Pause) {
adv |= ADVERTISE_PAUSE_CAP;
}
if (advertise & ADVERTISED_Asym_Pause) {
adv |= ADVERTISE_PAUSE_ASYM;
}
if (adv != oldadv) {
err = phy_write(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE, adv);
if (err < 0) {
return err;
}
changed = 1;
}
/* Configure gigabit if it's supported */
if (phydev->supported & (SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full)) {
oldadv = adv = phy_read(phydev, MDIO_DEVAD_NONE, MII_CTRL1000);
if (adv < 0) {
return adv;
}
adv &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
if (advertise & SUPPORTED_1000baseT_Half) {
adv |= ADVERTISE_1000HALF;
}
if (advertise & SUPPORTED_1000baseT_Full) {
adv |= ADVERTISE_1000FULL;
}
if (adv != oldadv) {
err = phy_write(phydev, MDIO_DEVAD_NONE, MII_CTRL1000,
adv);
if (err < 0) {
return err;
}
changed = 1;
}
}
return changed;
}
/**
* genphy_setup_forced - configures/forces speed/duplex from @phydev
* @phydev: target phy_device struct
*
* Description: Configures MII_BMCR to force speed/duplex
* to the values in phydev. Assumes that the values are valid.
*/
static int genphy_setup_forced(struct phy_device *phydev)
{
int err;
int ctl = 0;
phydev->pause = phydev->asym_pause = 0;
if (SPEED_1000 == phydev->speed) {
ctl |= BMCR_SPEED1000;
} else if (SPEED_100 == phydev->speed) {
ctl |= BMCR_SPEED100;
}
if (DUPLEX_FULL == phydev->duplex) {
ctl |= BMCR_FULLDPLX;
}
err = phy_write(phydev, MDIO_DEVAD_NONE, MII_BMCR, ctl);
return err;
}
/**
* genphy_restart_aneg - Enable and Restart Autonegotiation
* @phydev: target phy_device struct
*/
int genphy_restart_aneg(struct phy_device *phydev)
{
int ctl;
ctl = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR);
if (ctl < 0) {
return ctl;
}
ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
/* Don't isolate the PHY if we're negotiating */
ctl &= ~(BMCR_ISOLATE);
ctl = phy_write(phydev, MDIO_DEVAD_NONE, MII_BMCR, ctl);
return ctl;
}
/**
* genphy_config_aneg - restart auto-negotiation or write BMCR
* @phydev: target phy_device struct
*
* Description: If auto-negotiation is enabled, we configure the
* advertising, and then restart auto-negotiation. If it is not
* enabled, then we write the BMCR.
*/
int genphy_config_aneg(struct phy_device *phydev)
{
int result;
if (AUTONEG_ENABLE != phydev->autoneg) {
return genphy_setup_forced(phydev);
}
result = genphy_config_advert(phydev);
if (result < 0) { /* error */
return result;
}
if (result == 0) {
/* Advertisment hasn't changed, but maybe aneg was never on to
* begin with? Or maybe phy was isolated? */
int ctl = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR);
if (ctl < 0) {
return ctl;
}
if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) {
result = 1; /* do restart aneg */
}
}
/* Only restart aneg if we are advertising something different
* than we were before. */
if (result > 0) {
result = genphy_restart_aneg(phydev);
}
return result;
}
/**
* genphy_update_link - update link status in @phydev
* @phydev: target phy_device struct
*
* Description: Update the value in phydev->link to reflect the
* current link value. In order to do this, we need to read
* the status register twice, keeping the second value.
*/
int genphy_update_link(struct phy_device *phydev)
{
unsigned int mii_reg;
/*
* Wait if the link is up, and autonegotiation is in progress
* (ie - we're capable and it's not done)
*/
mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
/*
* If we already saw the link up, and it hasn't gone down, then
* we don't need to wait for autoneg again
*/
if (phydev->link && mii_reg & BMSR_LSTATUS) {
ZF_LOGI("link already established");
return 0;
}
if ((mii_reg & BMSR_ANEGCAPABLE) && !(mii_reg & BMSR_ANEGCOMPLETE)) {
int i = 0;
ZF_LOGI(
"waiting for auto negotiation to complete on phy %d, '%s'",
phydev->addr, phydev->dev->name);
fflush(stdout);
while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
/*
* Timeout reached ?
*/
if (i > PHY_ANEG_TIMEOUT) {
ZF_LOGE("auto negotiation timeout");
phydev->link = 0;
return 0;
}
if ((i++ % 500) == 0) {
printf(".");
fflush(stdout);
}
udelay(1000); /* 1 ms */
mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
}
ZF_LOGI("auto negotiation complete on phy %d, '%s'",
phydev->addr, phydev->dev->name);
phydev->link = 1;
} else {
/* Read the link a second time to clear the latched state */
mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
if (mii_reg & BMSR_LSTATUS) {
phydev->link = 1;
} else {
phydev->link = 0;
}
}
return 0;
}
/*
* Generic function which updates the speed and duplex. If
* autonegotiation is enabled, it uses the AND of the link
* partner's advertised capabilities and our advertised
* capabilities. If autonegotiation is disabled, we use the
* appropriate bits in the control register.
*
* Stolen from Linux's mii.c and phy_device.c
*/
static int genphy_parse_link(struct phy_device *phydev)
{
int mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
/* We're using autonegotiation */
if (mii_reg & BMSR_ANEGCAPABLE) {
u32 lpa = 0;
u32 gblpa = 0;
/* Check for gigabit capability */
if (mii_reg & BMSR_ERCAP) {
/* We want a list of states supported by
* both PHYs in the link
*/
gblpa = phy_read(phydev, MDIO_DEVAD_NONE, MII_STAT1000);
gblpa &= phy_read(phydev,
MDIO_DEVAD_NONE, MII_CTRL1000) << 2;
}
/* Set the baseline so we only have to set them
* if they're different
*/
phydev->speed = SPEED_10;
phydev->duplex = DUPLEX_HALF;
/* Check the gigabit fields */
if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
phydev->speed = SPEED_1000;
if (gblpa & PHY_1000BTSR_1000FD) {
phydev->duplex = DUPLEX_FULL;
}
/* We're done! */
return 0;
}
lpa = phy_read(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE);
lpa &= phy_read(phydev, MDIO_DEVAD_NONE, MII_LPA);
if (lpa & (LPA_100FULL | LPA_100HALF)) {
phydev->speed = SPEED_100;
if (lpa & LPA_100FULL) {
phydev->duplex = DUPLEX_FULL;
}
} else if (lpa & LPA_10FULL) {
phydev->duplex = DUPLEX_FULL;
}
} else {
u32 bmcr = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR);
phydev->speed = SPEED_10;
phydev->duplex = DUPLEX_HALF;
if (bmcr & BMCR_FULLDPLX) {
phydev->duplex = DUPLEX_FULL;
}
if (bmcr & BMCR_SPEED1000) {
phydev->speed = SPEED_1000;
} else if (bmcr & BMCR_SPEED100) {
phydev->speed = SPEED_100;
}
}
return 0;
}
int genphy_config(struct phy_device *phydev)
{
int val;
u32 features;
/* For now, I'll claim that the generic driver supports
* all possible port types */
features = (SUPPORTED_TP | SUPPORTED_MII
| SUPPORTED_AUI | SUPPORTED_FIBRE |
SUPPORTED_BNC);
/* Do we support autonegotiation? */
val = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR);
if (val < 0) {
return val;
}
if (val & BMSR_ANEGCAPABLE) {
features |= SUPPORTED_Autoneg;
}
if (val & BMSR_100FULL) {
features |= SUPPORTED_100baseT_Full;
}
if (val & BMSR_100HALF) {
features |= SUPPORTED_100baseT_Half;
}
if (val & BMSR_10FULL) {
features |= SUPPORTED_10baseT_Full;
}
if (val & BMSR_10HALF) {
features |= SUPPORTED_10baseT_Half;
}
if (val & BMSR_ESTATEN) {
val = phy_read(phydev, MDIO_DEVAD_NONE, MII_ESTATUS);
if (val < 0) {
return val;
}
if (val & ESTATUS_1000_TFULL) {
features |= SUPPORTED_1000baseT_Full;
}
if (val & ESTATUS_1000_THALF) {
features |= SUPPORTED_1000baseT_Half;
}
}
phydev->supported = features;
phydev->advertising = features;
genphy_config_aneg(phydev);
return 0;
}
int genphy_startup(struct phy_device *phydev)
{
genphy_update_link(phydev);
genphy_parse_link(phydev);
return 0;
}
int genphy_shutdown(struct phy_device *phydev)
{
return 0;
}
static struct phy_driver genphy_driver = {
.uid = 0xffffffff,
.mask = 0xffffffff,
.name = "Generic PHY",
.features = 0,
.config = genphy_config,
.startup = genphy_startup,
.shutdown = genphy_shutdown,
};
struct list_head phy_drivers = { &phy_drivers, &phy_drivers };
int phy_register(struct phy_driver *drv)
{
drv->list.next = &drv->list;
drv->list.prev = &drv->list;
list_add_tail(&drv->list, &phy_drivers);
return 0;
}
static int phy_probe(struct phy_device *phydev)
{
int err = 0;
phydev->advertising = phydev->supported = phydev->drv->features;
phydev->mmds = phydev->drv->mmds;
if (phydev->drv->probe) {
err = phydev->drv->probe(phydev);
}
return err;
}
static struct phy_driver *generic_for_interface(phy_interface_t interface)
{
#ifdef CONFIG_PHYLIB_10G
if (is_10g_interface(interface)) {
return &gen10g_driver;
}
#endif
return &genphy_driver;
}
static struct phy_driver *get_phy_driver(struct phy_device *phydev,
phy_interface_t interface)
{
struct list_head *entry;
int phy_id = phydev->phy_id;
struct phy_driver *drv = NULL;
list_for_each(entry, &phy_drivers) {
drv = list_entry(entry, struct phy_driver, list);
if ((drv->uid & drv->mask) == (phy_id & drv->mask)) {
return drv;
}
}
/* If we made it here, there's no driver for this PHY */
return generic_for_interface(interface);
}
static struct phy_device *phy_device_create(struct mii_dev *bus, int addr,
int phy_id,
phy_interface_t interface)
{
struct phy_device *dev;
/* We allocate the device, and initialize the
* default values */
dev = malloc(sizeof(*dev));
if (!dev) {
ZF_LOGE("Failed to allocate PHY device for '%s':%d", bus->name, addr);
return NULL;
}
memset(dev, 0, sizeof(*dev));
dev->duplex = -1;
dev->link = 1;
dev->interface = interface;
dev->autoneg = AUTONEG_ENABLE;
dev->addr = addr;
dev->phy_id = phy_id;
dev->bus = bus;
dev->drv = get_phy_driver(dev, interface);
phy_probe(dev);
bus->phymap[addr] = dev;
return dev;
}
/**
* get_phy_id - reads the specified addr for its ID.
* @bus: the target MII bus
* @addr: PHY address on the MII bus
* @phy_id: where to store the ID retrieved.
*
* Description: Reads the ID registers of the PHY at @addr on the
* @bus, stores it in @phy_id and returns zero on success.
*/
static int get_phy_id(struct mii_dev *bus, int addr, int devad, u32 *phy_id)
{
int phy_reg;
/* Grab the bits from PHYIR1, and put them
* in the upper half */
phy_reg = bus->read(bus, addr, devad, MII_PHYSID1);
if (phy_reg < 0) {
ZF_LOGE("read MII_PHYSID1 failed, code %d", phy_reg);
return -EIO;
}
*phy_id = (phy_reg & 0xffff) << 16;
/* Grab the bits from PHYIR2, and put them in the lower half */
phy_reg = bus->read(bus, addr, devad, MII_PHYSID2);
if (phy_reg < 0) {
ZF_LOGE("read MII_PHYSID2 failed, code %d", phy_reg);
return -EIO;
}
*phy_id |= (phy_reg & 0xffff);
return 0;
}
static struct phy_device *create_phy_by_mask(struct mii_dev *bus,
unsigned phy_mask, int devad, phy_interface_t interface)
{
u32 phy_id = 0xffffffff;
while (phy_mask) {
int addr = ffs(phy_mask) - 1;
int r = get_phy_id(bus, addr, devad, &phy_id);
if (r < 0) {
ZF_LOGE("Failed to get PHY ID, code %d", r);
return NULL;
}
/* If the PHY ID is mostly f's, we didn't find anything */
if ((phy_id & 0x1fffffff) != 0x1fffffff) {
return phy_device_create(bus, addr, phy_id, interface);
}
phy_mask &= ~(BIT(addr));
}
ZF_LOGE("Failed to create PHY by mask");
return NULL;
}
static struct phy_device *search_for_existing_phy(struct mii_dev *bus,
unsigned phy_mask, phy_interface_t interface)
{
/* If we have one, return the existing device, with new interface */
while (phy_mask) {
int addr = ffs(phy_mask) - 1;
if (bus->phymap[addr]) {
bus->phymap[addr]->interface = interface;
return bus->phymap[addr];
}
phy_mask &= ~(BIT(addr));
}
return NULL;
}
static struct phy_device *get_phy_device_by_mask(struct mii_dev *bus,
unsigned phy_mask, phy_interface_t interface)
{
struct phy_device *phydev = search_for_existing_phy(bus, phy_mask, interface);
if (phydev) {
return phydev;
}
/* Try Standard (ie Clause 22) access */
/* Otherwise we have to try Clause 45 */
for (unsigned int i = 0; i < 5; i++) {
phydev = create_phy_by_mask(bus, phy_mask, i ? i : MDIO_DEVAD_NONE, interface);
if (phydev) {
return phydev;
}
}
ZF_LOGE("PHY not found");
return phy_device_create(bus, ffs(phy_mask) - 1, 0xffffffff, interface);
}
/**
* get_phy_device - reads the specified PHY device and returns its @phy_device struct
* @bus: the target MII bus
* @addr: PHY address on the MII bus
*
* Description: Reads the ID registers of the PHY at @addr on the
* @bus, then allocates and returns the phy_device to represent it.
*/
static struct phy_device *get_phy_device(struct mii_dev *bus, int addr,
phy_interface_t interface)
{
return get_phy_device_by_mask(bus, BIT(addr), interface);
}
int phy_reset(struct phy_device *phydev)
{
int reg;
int timeout = 500;
int devad = MDIO_DEVAD_NONE;
#ifdef CONFIG_PHYLIB_10G
/* If it's 10G, we need to issue reset through one of the MMDs */
if (is_10g_interface(phydev->interface)) {
if (!phydev->mmds) {
gen10g_discover_mmds(phydev);
}
devad = ffs(phydev->mmds) - 1;
}
#endif
reg = phy_read(phydev, devad, MII_BMCR);
if (reg < 0) {
ZF_LOGE("PHY status read failed");
return -1;
}
reg |= BMCR_RESET;
if (phy_write(phydev, devad, MII_BMCR, reg) < 0) {
ZF_LOGE("PHY reset failed");
return -1;
}
#ifdef CONFIG_PHY_RESET_DELAY
udelay(CONFIG_PHY_RESET_DELAY); /* Intel LXT971A needs this */
#endif
/*
* Poll the control register for the reset bit to go to 0 (it is
* auto-clearing). This should happen within 0.5 seconds per the
* IEEE spec.
*/
while ((reg & BMCR_RESET) && timeout--) {
reg = phy_read(phydev, devad, MII_BMCR);
if (reg < 0) {
ZF_LOGE("PHY status read failed");
return -1;
}
udelay(1000);
}
if (reg & BMCR_RESET) {
ZF_LOGE("PHY reset timed out");
return -1;
}
return 0;
}
int miiphy_reset(const char *devname, unsigned char addr)
{
struct mii_dev *bus = miiphy_get_dev_by_name(devname);
struct phy_device *phydev;
/*
* miiphy_reset was only used on standard PHYs, so we'll fake it here.
* If later code tries to connect with the right interface, this will
* be corrected by get_phy_device in phy_connect()
*/
phydev = get_phy_device(bus, addr, PHY_INTERFACE_MODE_MII);
return phy_reset(phydev);
}
struct phy_device *phy_connect_by_mask(struct mii_dev *bus, unsigned phy_mask,
struct eth_device *dev, phy_interface_t interface)
{
struct phy_device *phydev;
/* Reset the bus */
if (bus->reset) {
bus->reset(bus);
}
/* Wait 15ms to make sure the PHY has come out of hard reset */
udelay(15000);
phydev = get_phy_device_by_mask(bus, phy_mask, interface);
if (!phydev) {
ZF_LOGE("Could not get PHY for '%s' phy mask 0x%x",
bus->name, phy_mask);
return NULL;
}
/* Soft Reset the PHY */
phy_reset(phydev);
if (phydev->dev) {
ZF_LOGI("%s:%d is connected to %s. Reconnecting to %s",
bus->name, phydev->addr, phydev->dev->name, dev->name);
}
phydev->dev = dev;
ZF_LOGI("Connected PHY '%s' at address %d to '%s'",
phydev->drv->name, phydev->addr, phydev->dev->name);
return phydev;
}
/*
* Start the PHY. Returns 0 on success, or a negative error code.
*/
struct phy_device *phy_connect(struct mii_dev *bus, int addr,
struct eth_device *dev, phy_interface_t interface)
{
return phy_connect_by_mask(bus, BIT(addr), dev, interface);
}
int phy_shutdown(struct phy_device *phydev)
{
if (phydev->drv->shutdown) {
phydev->drv->shutdown(phydev);
}
return 0;
}