blob: 22c51e10d1d6c6a267675c0aa1278dd29a7f1a00 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module i2c_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output i2c_reg_pkg::i2c_reg2hw_t reg2hw, // Write
input i2c_reg_pkg::i2c_hw2reg_t hw2reg, // Read
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import i2c_reg_pkg::* ;
localparam int AW = 7;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
assign tl_reg_h2d = tl_i;
assign tl_o = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err ;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_fmt_watermark_qs;
logic intr_state_fmt_watermark_wd;
logic intr_state_fmt_watermark_we;
logic intr_state_rx_watermark_qs;
logic intr_state_rx_watermark_wd;
logic intr_state_rx_watermark_we;
logic intr_state_fmt_overflow_qs;
logic intr_state_fmt_overflow_wd;
logic intr_state_fmt_overflow_we;
logic intr_state_rx_overflow_qs;
logic intr_state_rx_overflow_wd;
logic intr_state_rx_overflow_we;
logic intr_state_nak_qs;
logic intr_state_nak_wd;
logic intr_state_nak_we;
logic intr_state_scl_interference_qs;
logic intr_state_scl_interference_wd;
logic intr_state_scl_interference_we;
logic intr_state_sda_interference_qs;
logic intr_state_sda_interference_wd;
logic intr_state_sda_interference_we;
logic intr_state_stretch_timeout_qs;
logic intr_state_stretch_timeout_wd;
logic intr_state_stretch_timeout_we;
logic intr_state_sda_unstable_qs;
logic intr_state_sda_unstable_wd;
logic intr_state_sda_unstable_we;
logic intr_enable_fmt_watermark_qs;
logic intr_enable_fmt_watermark_wd;
logic intr_enable_fmt_watermark_we;
logic intr_enable_rx_watermark_qs;
logic intr_enable_rx_watermark_wd;
logic intr_enable_rx_watermark_we;
logic intr_enable_fmt_overflow_qs;
logic intr_enable_fmt_overflow_wd;
logic intr_enable_fmt_overflow_we;
logic intr_enable_rx_overflow_qs;
logic intr_enable_rx_overflow_wd;
logic intr_enable_rx_overflow_we;
logic intr_enable_nak_qs;
logic intr_enable_nak_wd;
logic intr_enable_nak_we;
logic intr_enable_scl_interference_qs;
logic intr_enable_scl_interference_wd;
logic intr_enable_scl_interference_we;
logic intr_enable_sda_interference_qs;
logic intr_enable_sda_interference_wd;
logic intr_enable_sda_interference_we;
logic intr_enable_stretch_timeout_qs;
logic intr_enable_stretch_timeout_wd;
logic intr_enable_stretch_timeout_we;
logic intr_enable_sda_unstable_qs;
logic intr_enable_sda_unstable_wd;
logic intr_enable_sda_unstable_we;
logic intr_test_fmt_watermark_wd;
logic intr_test_fmt_watermark_we;
logic intr_test_rx_watermark_wd;
logic intr_test_rx_watermark_we;
logic intr_test_fmt_overflow_wd;
logic intr_test_fmt_overflow_we;
logic intr_test_rx_overflow_wd;
logic intr_test_rx_overflow_we;
logic intr_test_nak_wd;
logic intr_test_nak_we;
logic intr_test_scl_interference_wd;
logic intr_test_scl_interference_we;
logic intr_test_sda_interference_wd;
logic intr_test_sda_interference_we;
logic intr_test_stretch_timeout_wd;
logic intr_test_stretch_timeout_we;
logic intr_test_sda_unstable_wd;
logic intr_test_sda_unstable_we;
logic ctrl_qs;
logic ctrl_wd;
logic ctrl_we;
logic status_fmtfull_qs;
logic status_fmtfull_re;
logic status_rxfull_qs;
logic status_rxfull_re;
logic status_fmtempty_qs;
logic status_fmtempty_re;
logic status_hostidle_qs;
logic status_hostidle_re;
logic status_targetidle_qs;
logic status_targetidle_re;
logic status_rxempty_qs;
logic status_rxempty_re;
logic [7:0] rdata_qs;
logic rdata_re;
logic [7:0] fdata_fbyte_wd;
logic fdata_fbyte_we;
logic fdata_start_wd;
logic fdata_start_we;
logic fdata_stop_wd;
logic fdata_stop_we;
logic fdata_read_wd;
logic fdata_read_we;
logic fdata_rcont_wd;
logic fdata_rcont_we;
logic fdata_nakok_wd;
logic fdata_nakok_we;
logic fifo_ctrl_rxrst_wd;
logic fifo_ctrl_rxrst_we;
logic fifo_ctrl_fmtrst_wd;
logic fifo_ctrl_fmtrst_we;
logic [2:0] fifo_ctrl_rxilvl_qs;
logic [2:0] fifo_ctrl_rxilvl_wd;
logic fifo_ctrl_rxilvl_we;
logic [1:0] fifo_ctrl_fmtilvl_qs;
logic [1:0] fifo_ctrl_fmtilvl_wd;
logic fifo_ctrl_fmtilvl_we;
logic [5:0] fifo_status_fmtlvl_qs;
logic fifo_status_fmtlvl_re;
logic [5:0] fifo_status_rxlvl_qs;
logic fifo_status_rxlvl_re;
logic ovrd_txovrden_qs;
logic ovrd_txovrden_wd;
logic ovrd_txovrden_we;
logic ovrd_sclval_qs;
logic ovrd_sclval_wd;
logic ovrd_sclval_we;
logic ovrd_sdaval_qs;
logic ovrd_sdaval_wd;
logic ovrd_sdaval_we;
logic [15:0] val_scl_rx_qs;
logic val_scl_rx_re;
logic [15:0] val_sda_rx_qs;
logic val_sda_rx_re;
logic [15:0] timing0_thigh_qs;
logic [15:0] timing0_thigh_wd;
logic timing0_thigh_we;
logic [15:0] timing0_tlow_qs;
logic [15:0] timing0_tlow_wd;
logic timing0_tlow_we;
logic [15:0] timing1_t_r_qs;
logic [15:0] timing1_t_r_wd;
logic timing1_t_r_we;
logic [15:0] timing1_t_f_qs;
logic [15:0] timing1_t_f_wd;
logic timing1_t_f_we;
logic [15:0] timing2_tsu_sta_qs;
logic [15:0] timing2_tsu_sta_wd;
logic timing2_tsu_sta_we;
logic [15:0] timing2_thd_sta_qs;
logic [15:0] timing2_thd_sta_wd;
logic timing2_thd_sta_we;
logic [15:0] timing3_tsu_dat_qs;
logic [15:0] timing3_tsu_dat_wd;
logic timing3_tsu_dat_we;
logic [15:0] timing3_thd_dat_qs;
logic [15:0] timing3_thd_dat_wd;
logic timing3_thd_dat_we;
logic [15:0] timing4_tsu_sto_qs;
logic [15:0] timing4_tsu_sto_wd;
logic timing4_tsu_sto_we;
logic [15:0] timing4_t_buf_qs;
logic [15:0] timing4_t_buf_wd;
logic timing4_t_buf_we;
logic [30:0] timeout_ctrl_val_qs;
logic [30:0] timeout_ctrl_val_wd;
logic timeout_ctrl_val_we;
logic timeout_ctrl_en_qs;
logic timeout_ctrl_en_wd;
logic timeout_ctrl_en_we;
// Register instances
// R[intr_state]: V(False)
// F[fmt_watermark]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_fmt_watermark (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_fmt_watermark_we),
.wd (intr_state_fmt_watermark_wd),
// from internal hardware
.de (hw2reg.intr_state.fmt_watermark.de),
.d (hw2reg.intr_state.fmt_watermark.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.fmt_watermark.q ),
// to register interface (read)
.qs (intr_state_fmt_watermark_qs)
);
// F[rx_watermark]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_rx_watermark (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_rx_watermark_we),
.wd (intr_state_rx_watermark_wd),
// from internal hardware
.de (hw2reg.intr_state.rx_watermark.de),
.d (hw2reg.intr_state.rx_watermark.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.rx_watermark.q ),
// to register interface (read)
.qs (intr_state_rx_watermark_qs)
);
// F[fmt_overflow]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_fmt_overflow (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_fmt_overflow_we),
.wd (intr_state_fmt_overflow_wd),
// from internal hardware
.de (hw2reg.intr_state.fmt_overflow.de),
.d (hw2reg.intr_state.fmt_overflow.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.fmt_overflow.q ),
// to register interface (read)
.qs (intr_state_fmt_overflow_qs)
);
// F[rx_overflow]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_rx_overflow (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_rx_overflow_we),
.wd (intr_state_rx_overflow_wd),
// from internal hardware
.de (hw2reg.intr_state.rx_overflow.de),
.d (hw2reg.intr_state.rx_overflow.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.rx_overflow.q ),
// to register interface (read)
.qs (intr_state_rx_overflow_qs)
);
// F[nak]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_nak (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_nak_we),
.wd (intr_state_nak_wd),
// from internal hardware
.de (hw2reg.intr_state.nak.de),
.d (hw2reg.intr_state.nak.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.nak.q ),
// to register interface (read)
.qs (intr_state_nak_qs)
);
// F[scl_interference]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_scl_interference (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_scl_interference_we),
.wd (intr_state_scl_interference_wd),
// from internal hardware
.de (hw2reg.intr_state.scl_interference.de),
.d (hw2reg.intr_state.scl_interference.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.scl_interference.q ),
// to register interface (read)
.qs (intr_state_scl_interference_qs)
);
// F[sda_interference]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_sda_interference (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_sda_interference_we),
.wd (intr_state_sda_interference_wd),
// from internal hardware
.de (hw2reg.intr_state.sda_interference.de),
.d (hw2reg.intr_state.sda_interference.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.sda_interference.q ),
// to register interface (read)
.qs (intr_state_sda_interference_qs)
);
// F[stretch_timeout]: 7:7
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_stretch_timeout (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_stretch_timeout_we),
.wd (intr_state_stretch_timeout_wd),
// from internal hardware
.de (hw2reg.intr_state.stretch_timeout.de),
.d (hw2reg.intr_state.stretch_timeout.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.stretch_timeout.q ),
// to register interface (read)
.qs (intr_state_stretch_timeout_qs)
);
// F[sda_unstable]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_sda_unstable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_sda_unstable_we),
.wd (intr_state_sda_unstable_wd),
// from internal hardware
.de (hw2reg.intr_state.sda_unstable.de),
.d (hw2reg.intr_state.sda_unstable.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.sda_unstable.q ),
// to register interface (read)
.qs (intr_state_sda_unstable_qs)
);
// R[intr_enable]: V(False)
// F[fmt_watermark]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_fmt_watermark (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_fmt_watermark_we),
.wd (intr_enable_fmt_watermark_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.fmt_watermark.q ),
// to register interface (read)
.qs (intr_enable_fmt_watermark_qs)
);
// F[rx_watermark]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_rx_watermark (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_rx_watermark_we),
.wd (intr_enable_rx_watermark_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.rx_watermark.q ),
// to register interface (read)
.qs (intr_enable_rx_watermark_qs)
);
// F[fmt_overflow]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_fmt_overflow (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_fmt_overflow_we),
.wd (intr_enable_fmt_overflow_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.fmt_overflow.q ),
// to register interface (read)
.qs (intr_enable_fmt_overflow_qs)
);
// F[rx_overflow]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_rx_overflow (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_rx_overflow_we),
.wd (intr_enable_rx_overflow_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.rx_overflow.q ),
// to register interface (read)
.qs (intr_enable_rx_overflow_qs)
);
// F[nak]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_nak (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_nak_we),
.wd (intr_enable_nak_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.nak.q ),
// to register interface (read)
.qs (intr_enable_nak_qs)
);
// F[scl_interference]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_scl_interference (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_scl_interference_we),
.wd (intr_enable_scl_interference_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.scl_interference.q ),
// to register interface (read)
.qs (intr_enable_scl_interference_qs)
);
// F[sda_interference]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_sda_interference (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_sda_interference_we),
.wd (intr_enable_sda_interference_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.sda_interference.q ),
// to register interface (read)
.qs (intr_enable_sda_interference_qs)
);
// F[stretch_timeout]: 7:7
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_stretch_timeout (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_stretch_timeout_we),
.wd (intr_enable_stretch_timeout_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.stretch_timeout.q ),
// to register interface (read)
.qs (intr_enable_stretch_timeout_qs)
);
// F[sda_unstable]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_sda_unstable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_sda_unstable_we),
.wd (intr_enable_sda_unstable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.sda_unstable.q ),
// to register interface (read)
.qs (intr_enable_sda_unstable_qs)
);
// R[intr_test]: V(True)
// F[fmt_watermark]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_fmt_watermark (
.re (1'b0),
.we (intr_test_fmt_watermark_we),
.wd (intr_test_fmt_watermark_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.fmt_watermark.qe),
.q (reg2hw.intr_test.fmt_watermark.q ),
.qs ()
);
// F[rx_watermark]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_rx_watermark (
.re (1'b0),
.we (intr_test_rx_watermark_we),
.wd (intr_test_rx_watermark_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.rx_watermark.qe),
.q (reg2hw.intr_test.rx_watermark.q ),
.qs ()
);
// F[fmt_overflow]: 2:2
prim_subreg_ext #(
.DW (1)
) u_intr_test_fmt_overflow (
.re (1'b0),
.we (intr_test_fmt_overflow_we),
.wd (intr_test_fmt_overflow_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.fmt_overflow.qe),
.q (reg2hw.intr_test.fmt_overflow.q ),
.qs ()
);
// F[rx_overflow]: 3:3
prim_subreg_ext #(
.DW (1)
) u_intr_test_rx_overflow (
.re (1'b0),
.we (intr_test_rx_overflow_we),
.wd (intr_test_rx_overflow_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.rx_overflow.qe),
.q (reg2hw.intr_test.rx_overflow.q ),
.qs ()
);
// F[nak]: 4:4
prim_subreg_ext #(
.DW (1)
) u_intr_test_nak (
.re (1'b0),
.we (intr_test_nak_we),
.wd (intr_test_nak_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.nak.qe),
.q (reg2hw.intr_test.nak.q ),
.qs ()
);
// F[scl_interference]: 5:5
prim_subreg_ext #(
.DW (1)
) u_intr_test_scl_interference (
.re (1'b0),
.we (intr_test_scl_interference_we),
.wd (intr_test_scl_interference_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.scl_interference.qe),
.q (reg2hw.intr_test.scl_interference.q ),
.qs ()
);
// F[sda_interference]: 6:6
prim_subreg_ext #(
.DW (1)
) u_intr_test_sda_interference (
.re (1'b0),
.we (intr_test_sda_interference_we),
.wd (intr_test_sda_interference_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.sda_interference.qe),
.q (reg2hw.intr_test.sda_interference.q ),
.qs ()
);
// F[stretch_timeout]: 7:7
prim_subreg_ext #(
.DW (1)
) u_intr_test_stretch_timeout (
.re (1'b0),
.we (intr_test_stretch_timeout_we),
.wd (intr_test_stretch_timeout_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.stretch_timeout.qe),
.q (reg2hw.intr_test.stretch_timeout.q ),
.qs ()
);
// F[sda_unstable]: 8:8
prim_subreg_ext #(
.DW (1)
) u_intr_test_sda_unstable (
.re (1'b0),
.we (intr_test_sda_unstable_we),
.wd (intr_test_sda_unstable_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.sda_unstable.qe),
.q (reg2hw.intr_test.sda_unstable.q ),
.qs ()
);
// R[ctrl]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_we),
.wd (ctrl_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.q ),
// to register interface (read)
.qs (ctrl_qs)
);
// R[status]: V(True)
// F[fmtfull]: 0:0
prim_subreg_ext #(
.DW (1)
) u_status_fmtfull (
.re (status_fmtfull_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fmtfull.d),
.qre (),
.qe (),
.q (),
.qs (status_fmtfull_qs)
);
// F[rxfull]: 1:1
prim_subreg_ext #(
.DW (1)
) u_status_rxfull (
.re (status_rxfull_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.rxfull.d),
.qre (),
.qe (),
.q (),
.qs (status_rxfull_qs)
);
// F[fmtempty]: 2:2
prim_subreg_ext #(
.DW (1)
) u_status_fmtempty (
.re (status_fmtempty_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fmtempty.d),
.qre (),
.qe (),
.q (),
.qs (status_fmtempty_qs)
);
// F[hostidle]: 3:3
prim_subreg_ext #(
.DW (1)
) u_status_hostidle (
.re (status_hostidle_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.hostidle.d),
.qre (),
.qe (),
.q (),
.qs (status_hostidle_qs)
);
// F[targetidle]: 4:4
prim_subreg_ext #(
.DW (1)
) u_status_targetidle (
.re (status_targetidle_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.targetidle.d),
.qre (),
.qe (),
.q (),
.qs (status_targetidle_qs)
);
// F[rxempty]: 5:5
prim_subreg_ext #(
.DW (1)
) u_status_rxempty (
.re (status_rxempty_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.rxempty.d),
.qre (),
.qe (),
.q (),
.qs (status_rxempty_qs)
);
// R[rdata]: V(True)
prim_subreg_ext #(
.DW (8)
) u_rdata (
.re (rdata_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.rdata.d),
.qre (reg2hw.rdata.re),
.qe (),
.q (reg2hw.rdata.q ),
.qs (rdata_qs)
);
// R[fdata]: V(False)
// F[fbyte]: 7:0
prim_subreg #(
.DW (8),
.SWACCESS("WO"),
.RESVAL (8'h0)
) u_fdata_fbyte (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fdata_fbyte_we),
.wd (fdata_fbyte_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fdata.fbyte.qe),
.q (reg2hw.fdata.fbyte.q ),
.qs ()
);
// F[start]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_fdata_start (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fdata_start_we),
.wd (fdata_start_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fdata.start.qe),
.q (reg2hw.fdata.start.q ),
.qs ()
);
// F[stop]: 9:9
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_fdata_stop (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fdata_stop_we),
.wd (fdata_stop_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fdata.stop.qe),
.q (reg2hw.fdata.stop.q ),
.qs ()
);
// F[read]: 10:10
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_fdata_read (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fdata_read_we),
.wd (fdata_read_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fdata.read.qe),
.q (reg2hw.fdata.read.q ),
.qs ()
);
// F[rcont]: 11:11
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_fdata_rcont (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fdata_rcont_we),
.wd (fdata_rcont_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fdata.rcont.qe),
.q (reg2hw.fdata.rcont.q ),
.qs ()
);
// F[nakok]: 12:12
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_fdata_nakok (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fdata_nakok_we),
.wd (fdata_nakok_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fdata.nakok.qe),
.q (reg2hw.fdata.nakok.q ),
.qs ()
);
// R[fifo_ctrl]: V(False)
// F[rxrst]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_fifo_ctrl_rxrst (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fifo_ctrl_rxrst_we),
.wd (fifo_ctrl_rxrst_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fifo_ctrl.rxrst.qe),
.q (reg2hw.fifo_ctrl.rxrst.q ),
.qs ()
);
// F[fmtrst]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_fifo_ctrl_fmtrst (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fifo_ctrl_fmtrst_we),
.wd (fifo_ctrl_fmtrst_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fifo_ctrl.fmtrst.qe),
.q (reg2hw.fifo_ctrl.fmtrst.q ),
.qs ()
);
// F[rxilvl]: 4:2
prim_subreg #(
.DW (3),
.SWACCESS("RW"),
.RESVAL (3'h0)
) u_fifo_ctrl_rxilvl (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fifo_ctrl_rxilvl_we),
.wd (fifo_ctrl_rxilvl_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fifo_ctrl.rxilvl.qe),
.q (reg2hw.fifo_ctrl.rxilvl.q ),
// to register interface (read)
.qs (fifo_ctrl_rxilvl_qs)
);
// F[fmtilvl]: 6:5
prim_subreg #(
.DW (2),
.SWACCESS("RW"),
.RESVAL (2'h0)
) u_fifo_ctrl_fmtilvl (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (fifo_ctrl_fmtilvl_we),
.wd (fifo_ctrl_fmtilvl_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.fifo_ctrl.fmtilvl.qe),
.q (reg2hw.fifo_ctrl.fmtilvl.q ),
// to register interface (read)
.qs (fifo_ctrl_fmtilvl_qs)
);
// R[fifo_status]: V(True)
// F[fmtlvl]: 5:0
prim_subreg_ext #(
.DW (6)
) u_fifo_status_fmtlvl (
.re (fifo_status_fmtlvl_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.fifo_status.fmtlvl.d),
.qre (),
.qe (),
.q (),
.qs (fifo_status_fmtlvl_qs)
);
// F[rxlvl]: 21:16
prim_subreg_ext #(
.DW (6)
) u_fifo_status_rxlvl (
.re (fifo_status_rxlvl_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.fifo_status.rxlvl.d),
.qre (),
.qe (),
.q (),
.qs (fifo_status_rxlvl_qs)
);
// R[ovrd]: V(False)
// F[txovrden]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ovrd_txovrden (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ovrd_txovrden_we),
.wd (ovrd_txovrden_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ovrd.txovrden.q ),
// to register interface (read)
.qs (ovrd_txovrden_qs)
);
// F[sclval]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ovrd_sclval (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ovrd_sclval_we),
.wd (ovrd_sclval_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ovrd.sclval.q ),
// to register interface (read)
.qs (ovrd_sclval_qs)
);
// F[sdaval]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ovrd_sdaval (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ovrd_sdaval_we),
.wd (ovrd_sdaval_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ovrd.sdaval.q ),
// to register interface (read)
.qs (ovrd_sdaval_qs)
);
// R[val]: V(True)
// F[scl_rx]: 15:0
prim_subreg_ext #(
.DW (16)
) u_val_scl_rx (
.re (val_scl_rx_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.val.scl_rx.d),
.qre (),
.qe (),
.q (),
.qs (val_scl_rx_qs)
);
// F[sda_rx]: 31:16
prim_subreg_ext #(
.DW (16)
) u_val_sda_rx (
.re (val_sda_rx_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.val.sda_rx.d),
.qre (),
.qe (),
.q (),
.qs (val_sda_rx_qs)
);
// R[timing0]: V(False)
// F[thigh]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing0_thigh (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing0_thigh_we),
.wd (timing0_thigh_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing0.thigh.q ),
// to register interface (read)
.qs (timing0_thigh_qs)
);
// F[tlow]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing0_tlow (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing0_tlow_we),
.wd (timing0_tlow_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing0.tlow.q ),
// to register interface (read)
.qs (timing0_tlow_qs)
);
// R[timing1]: V(False)
// F[t_r]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing1_t_r (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing1_t_r_we),
.wd (timing1_t_r_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing1.t_r.q ),
// to register interface (read)
.qs (timing1_t_r_qs)
);
// F[t_f]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing1_t_f (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing1_t_f_we),
.wd (timing1_t_f_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing1.t_f.q ),
// to register interface (read)
.qs (timing1_t_f_qs)
);
// R[timing2]: V(False)
// F[tsu_sta]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing2_tsu_sta (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing2_tsu_sta_we),
.wd (timing2_tsu_sta_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing2.tsu_sta.q ),
// to register interface (read)
.qs (timing2_tsu_sta_qs)
);
// F[thd_sta]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing2_thd_sta (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing2_thd_sta_we),
.wd (timing2_thd_sta_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing2.thd_sta.q ),
// to register interface (read)
.qs (timing2_thd_sta_qs)
);
// R[timing3]: V(False)
// F[tsu_dat]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing3_tsu_dat (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing3_tsu_dat_we),
.wd (timing3_tsu_dat_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing3.tsu_dat.q ),
// to register interface (read)
.qs (timing3_tsu_dat_qs)
);
// F[thd_dat]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing3_thd_dat (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing3_thd_dat_we),
.wd (timing3_thd_dat_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing3.thd_dat.q ),
// to register interface (read)
.qs (timing3_thd_dat_qs)
);
// R[timing4]: V(False)
// F[tsu_sto]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing4_tsu_sto (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing4_tsu_sto_we),
.wd (timing4_tsu_sto_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing4.tsu_sto.q ),
// to register interface (read)
.qs (timing4_tsu_sto_qs)
);
// F[t_buf]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_timing4_t_buf (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timing4_t_buf_we),
.wd (timing4_t_buf_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timing4.t_buf.q ),
// to register interface (read)
.qs (timing4_t_buf_qs)
);
// R[timeout_ctrl]: V(False)
// F[val]: 30:0
prim_subreg #(
.DW (31),
.SWACCESS("RW"),
.RESVAL (31'h0)
) u_timeout_ctrl_val (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timeout_ctrl_val_we),
.wd (timeout_ctrl_val_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timeout_ctrl.val.q ),
// to register interface (read)
.qs (timeout_ctrl_val_qs)
);
// F[en]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_timeout_ctrl_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (timeout_ctrl_en_we),
.wd (timeout_ctrl_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.timeout_ctrl.en.q ),
// to register interface (read)
.qs (timeout_ctrl_en_qs)
);
logic [16:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == I2C_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == I2C_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == I2C_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == I2C_CTRL_OFFSET);
addr_hit[ 4] = (reg_addr == I2C_STATUS_OFFSET);
addr_hit[ 5] = (reg_addr == I2C_RDATA_OFFSET);
addr_hit[ 6] = (reg_addr == I2C_FDATA_OFFSET);
addr_hit[ 7] = (reg_addr == I2C_FIFO_CTRL_OFFSET);
addr_hit[ 8] = (reg_addr == I2C_FIFO_STATUS_OFFSET);
addr_hit[ 9] = (reg_addr == I2C_OVRD_OFFSET);
addr_hit[10] = (reg_addr == I2C_VAL_OFFSET);
addr_hit[11] = (reg_addr == I2C_TIMING0_OFFSET);
addr_hit[12] = (reg_addr == I2C_TIMING1_OFFSET);
addr_hit[13] = (reg_addr == I2C_TIMING2_OFFSET);
addr_hit[14] = (reg_addr == I2C_TIMING3_OFFSET);
addr_hit[15] = (reg_addr == I2C_TIMING4_OFFSET);
addr_hit[16] = (reg_addr == I2C_TIMEOUT_CTRL_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (I2C_PERMIT[ 0] != (I2C_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (I2C_PERMIT[ 1] != (I2C_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (I2C_PERMIT[ 2] != (I2C_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (I2C_PERMIT[ 3] != (I2C_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (I2C_PERMIT[ 4] != (I2C_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (I2C_PERMIT[ 5] != (I2C_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (I2C_PERMIT[ 6] != (I2C_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (I2C_PERMIT[ 7] != (I2C_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (I2C_PERMIT[ 8] != (I2C_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (I2C_PERMIT[ 9] != (I2C_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (I2C_PERMIT[10] != (I2C_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[11] && reg_we && (I2C_PERMIT[11] != (I2C_PERMIT[11] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[12] && reg_we && (I2C_PERMIT[12] != (I2C_PERMIT[12] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[13] && reg_we && (I2C_PERMIT[13] != (I2C_PERMIT[13] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[14] && reg_we && (I2C_PERMIT[14] != (I2C_PERMIT[14] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[15] && reg_we && (I2C_PERMIT[15] != (I2C_PERMIT[15] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[16] && reg_we && (I2C_PERMIT[16] != (I2C_PERMIT[16] & reg_be))) wr_err = 1'b1 ;
end
assign intr_state_fmt_watermark_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_fmt_watermark_wd = reg_wdata[0];
assign intr_state_rx_watermark_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_rx_watermark_wd = reg_wdata[1];
assign intr_state_fmt_overflow_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_fmt_overflow_wd = reg_wdata[2];
assign intr_state_rx_overflow_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_rx_overflow_wd = reg_wdata[3];
assign intr_state_nak_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_nak_wd = reg_wdata[4];
assign intr_state_scl_interference_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_scl_interference_wd = reg_wdata[5];
assign intr_state_sda_interference_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_sda_interference_wd = reg_wdata[6];
assign intr_state_stretch_timeout_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_stretch_timeout_wd = reg_wdata[7];
assign intr_state_sda_unstable_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_sda_unstable_wd = reg_wdata[8];
assign intr_enable_fmt_watermark_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_fmt_watermark_wd = reg_wdata[0];
assign intr_enable_rx_watermark_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_rx_watermark_wd = reg_wdata[1];
assign intr_enable_fmt_overflow_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_fmt_overflow_wd = reg_wdata[2];
assign intr_enable_rx_overflow_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_rx_overflow_wd = reg_wdata[3];
assign intr_enable_nak_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_nak_wd = reg_wdata[4];
assign intr_enable_scl_interference_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_scl_interference_wd = reg_wdata[5];
assign intr_enable_sda_interference_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_sda_interference_wd = reg_wdata[6];
assign intr_enable_stretch_timeout_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_stretch_timeout_wd = reg_wdata[7];
assign intr_enable_sda_unstable_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_sda_unstable_wd = reg_wdata[8];
assign intr_test_fmt_watermark_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_fmt_watermark_wd = reg_wdata[0];
assign intr_test_rx_watermark_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_rx_watermark_wd = reg_wdata[1];
assign intr_test_fmt_overflow_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_fmt_overflow_wd = reg_wdata[2];
assign intr_test_rx_overflow_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_rx_overflow_wd = reg_wdata[3];
assign intr_test_nak_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_nak_wd = reg_wdata[4];
assign intr_test_scl_interference_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_scl_interference_wd = reg_wdata[5];
assign intr_test_sda_interference_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_sda_interference_wd = reg_wdata[6];
assign intr_test_stretch_timeout_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_stretch_timeout_wd = reg_wdata[7];
assign intr_test_sda_unstable_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_sda_unstable_wd = reg_wdata[8];
assign ctrl_we = addr_hit[3] & reg_we & ~wr_err;
assign ctrl_wd = reg_wdata[0];
assign status_fmtfull_re = addr_hit[4] && reg_re;
assign status_rxfull_re = addr_hit[4] && reg_re;
assign status_fmtempty_re = addr_hit[4] && reg_re;
assign status_hostidle_re = addr_hit[4] && reg_re;
assign status_targetidle_re = addr_hit[4] && reg_re;
assign status_rxempty_re = addr_hit[4] && reg_re;
assign rdata_re = addr_hit[5] && reg_re;
assign fdata_fbyte_we = addr_hit[6] & reg_we & ~wr_err;
assign fdata_fbyte_wd = reg_wdata[7:0];
assign fdata_start_we = addr_hit[6] & reg_we & ~wr_err;
assign fdata_start_wd = reg_wdata[8];
assign fdata_stop_we = addr_hit[6] & reg_we & ~wr_err;
assign fdata_stop_wd = reg_wdata[9];
assign fdata_read_we = addr_hit[6] & reg_we & ~wr_err;
assign fdata_read_wd = reg_wdata[10];
assign fdata_rcont_we = addr_hit[6] & reg_we & ~wr_err;
assign fdata_rcont_wd = reg_wdata[11];
assign fdata_nakok_we = addr_hit[6] & reg_we & ~wr_err;
assign fdata_nakok_wd = reg_wdata[12];
assign fifo_ctrl_rxrst_we = addr_hit[7] & reg_we & ~wr_err;
assign fifo_ctrl_rxrst_wd = reg_wdata[0];
assign fifo_ctrl_fmtrst_we = addr_hit[7] & reg_we & ~wr_err;
assign fifo_ctrl_fmtrst_wd = reg_wdata[1];
assign fifo_ctrl_rxilvl_we = addr_hit[7] & reg_we & ~wr_err;
assign fifo_ctrl_rxilvl_wd = reg_wdata[4:2];
assign fifo_ctrl_fmtilvl_we = addr_hit[7] & reg_we & ~wr_err;
assign fifo_ctrl_fmtilvl_wd = reg_wdata[6:5];
assign fifo_status_fmtlvl_re = addr_hit[8] && reg_re;
assign fifo_status_rxlvl_re = addr_hit[8] && reg_re;
assign ovrd_txovrden_we = addr_hit[9] & reg_we & ~wr_err;
assign ovrd_txovrden_wd = reg_wdata[0];
assign ovrd_sclval_we = addr_hit[9] & reg_we & ~wr_err;
assign ovrd_sclval_wd = reg_wdata[1];
assign ovrd_sdaval_we = addr_hit[9] & reg_we & ~wr_err;
assign ovrd_sdaval_wd = reg_wdata[2];
assign val_scl_rx_re = addr_hit[10] && reg_re;
assign val_sda_rx_re = addr_hit[10] && reg_re;
assign timing0_thigh_we = addr_hit[11] & reg_we & ~wr_err;
assign timing0_thigh_wd = reg_wdata[15:0];
assign timing0_tlow_we = addr_hit[11] & reg_we & ~wr_err;
assign timing0_tlow_wd = reg_wdata[31:16];
assign timing1_t_r_we = addr_hit[12] & reg_we & ~wr_err;
assign timing1_t_r_wd = reg_wdata[15:0];
assign timing1_t_f_we = addr_hit[12] & reg_we & ~wr_err;
assign timing1_t_f_wd = reg_wdata[31:16];
assign timing2_tsu_sta_we = addr_hit[13] & reg_we & ~wr_err;
assign timing2_tsu_sta_wd = reg_wdata[15:0];
assign timing2_thd_sta_we = addr_hit[13] & reg_we & ~wr_err;
assign timing2_thd_sta_wd = reg_wdata[31:16];
assign timing3_tsu_dat_we = addr_hit[14] & reg_we & ~wr_err;
assign timing3_tsu_dat_wd = reg_wdata[15:0];
assign timing3_thd_dat_we = addr_hit[14] & reg_we & ~wr_err;
assign timing3_thd_dat_wd = reg_wdata[31:16];
assign timing4_tsu_sto_we = addr_hit[15] & reg_we & ~wr_err;
assign timing4_tsu_sto_wd = reg_wdata[15:0];
assign timing4_t_buf_we = addr_hit[15] & reg_we & ~wr_err;
assign timing4_t_buf_wd = reg_wdata[31:16];
assign timeout_ctrl_val_we = addr_hit[16] & reg_we & ~wr_err;
assign timeout_ctrl_val_wd = reg_wdata[30:0];
assign timeout_ctrl_en_we = addr_hit[16] & reg_we & ~wr_err;
assign timeout_ctrl_en_wd = reg_wdata[31];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_fmt_watermark_qs;
reg_rdata_next[1] = intr_state_rx_watermark_qs;
reg_rdata_next[2] = intr_state_fmt_overflow_qs;
reg_rdata_next[3] = intr_state_rx_overflow_qs;
reg_rdata_next[4] = intr_state_nak_qs;
reg_rdata_next[5] = intr_state_scl_interference_qs;
reg_rdata_next[6] = intr_state_sda_interference_qs;
reg_rdata_next[7] = intr_state_stretch_timeout_qs;
reg_rdata_next[8] = intr_state_sda_unstable_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_fmt_watermark_qs;
reg_rdata_next[1] = intr_enable_rx_watermark_qs;
reg_rdata_next[2] = intr_enable_fmt_overflow_qs;
reg_rdata_next[3] = intr_enable_rx_overflow_qs;
reg_rdata_next[4] = intr_enable_nak_qs;
reg_rdata_next[5] = intr_enable_scl_interference_qs;
reg_rdata_next[6] = intr_enable_sda_interference_qs;
reg_rdata_next[7] = intr_enable_stretch_timeout_qs;
reg_rdata_next[8] = intr_enable_sda_unstable_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
reg_rdata_next[3] = '0;
reg_rdata_next[4] = '0;
reg_rdata_next[5] = '0;
reg_rdata_next[6] = '0;
reg_rdata_next[7] = '0;
reg_rdata_next[8] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = ctrl_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = status_fmtfull_qs;
reg_rdata_next[1] = status_rxfull_qs;
reg_rdata_next[2] = status_fmtempty_qs;
reg_rdata_next[3] = status_hostidle_qs;
reg_rdata_next[4] = status_targetidle_qs;
reg_rdata_next[5] = status_rxempty_qs;
end
addr_hit[5]: begin
reg_rdata_next[7:0] = rdata_qs;
end
addr_hit[6]: begin
reg_rdata_next[7:0] = '0;
reg_rdata_next[8] = '0;
reg_rdata_next[9] = '0;
reg_rdata_next[10] = '0;
reg_rdata_next[11] = '0;
reg_rdata_next[12] = '0;
end
addr_hit[7]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[4:2] = fifo_ctrl_rxilvl_qs;
reg_rdata_next[6:5] = fifo_ctrl_fmtilvl_qs;
end
addr_hit[8]: begin
reg_rdata_next[5:0] = fifo_status_fmtlvl_qs;
reg_rdata_next[21:16] = fifo_status_rxlvl_qs;
end
addr_hit[9]: begin
reg_rdata_next[0] = ovrd_txovrden_qs;
reg_rdata_next[1] = ovrd_sclval_qs;
reg_rdata_next[2] = ovrd_sdaval_qs;
end
addr_hit[10]: begin
reg_rdata_next[15:0] = val_scl_rx_qs;
reg_rdata_next[31:16] = val_sda_rx_qs;
end
addr_hit[11]: begin
reg_rdata_next[15:0] = timing0_thigh_qs;
reg_rdata_next[31:16] = timing0_tlow_qs;
end
addr_hit[12]: begin
reg_rdata_next[15:0] = timing1_t_r_qs;
reg_rdata_next[31:16] = timing1_t_f_qs;
end
addr_hit[13]: begin
reg_rdata_next[15:0] = timing2_tsu_sta_qs;
reg_rdata_next[31:16] = timing2_thd_sta_qs;
end
addr_hit[14]: begin
reg_rdata_next[15:0] = timing3_tsu_dat_qs;
reg_rdata_next[31:16] = timing3_thd_dat_qs;
end
addr_hit[15]: begin
reg_rdata_next[15:0] = timing4_tsu_sto_qs;
reg_rdata_next[31:16] = timing4_t_buf_qs;
end
addr_hit[16]: begin
reg_rdata_next[30:0] = timeout_ctrl_val_qs;
reg_rdata_next[31] = timeout_ctrl_en_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0)
endmodule