blob: cc0e34cfd110d77ef36a41377ae279cec128ec2f [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
// THIS FILE HAS BEEN GENERATED, DO NOT EDIT MANUALLY. COMMAND:
// util/make_new_dif.py --mode=regen --only=autogen
#include "sw/device/lib/dif/autogen/dif_kmac_autogen.h"
#include <stdint.h>
#include "sw/device/lib/dif/dif_base.h"
#include "kmac_regs.h" // Generated.
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_init(mmio_region_t base_addr, dif_kmac_t *kmac) {
if (kmac == NULL) {
return kDifBadArg;
}
kmac->base_addr = base_addr;
return kDifOk;
}
dif_result_t dif_kmac_alert_force(const dif_kmac_t *kmac,
dif_kmac_alert_t alert) {
if (kmac == NULL) {
return kDifBadArg;
}
bitfield_bit32_index_t alert_idx;
switch (alert) {
case kDifKmacAlertRecovOperationErr:
alert_idx = KMAC_ALERT_TEST_RECOV_OPERATION_ERR_BIT;
break;
case kDifKmacAlertFatalFaultErr:
alert_idx = KMAC_ALERT_TEST_FATAL_FAULT_ERR_BIT;
break;
default:
return kDifBadArg;
}
uint32_t alert_test_reg = bitfield_bit32_write(0, alert_idx, true);
mmio_region_write32(kmac->base_addr, KMAC_ALERT_TEST_REG_OFFSET,
alert_test_reg);
return kDifOk;
}
/**
* Get the corresponding interrupt register bit offset of the IRQ.
*/
static bool kmac_get_irq_bit_index(dif_kmac_irq_t irq,
bitfield_bit32_index_t *index_out) {
switch (irq) {
case kDifKmacIrqKmacDone:
*index_out = KMAC_INTR_COMMON_KMAC_DONE_BIT;
break;
case kDifKmacIrqFifoEmpty:
*index_out = KMAC_INTR_COMMON_FIFO_EMPTY_BIT;
break;
case kDifKmacIrqKmacErr:
*index_out = KMAC_INTR_COMMON_KMAC_ERR_BIT;
break;
default:
return false;
}
return true;
}
static dif_irq_type_t irq_types[] = {
kDifIrqTypeEvent,
kDifIrqTypeEvent,
kDifIrqTypeEvent,
};
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_get_type(const dif_kmac_t *kmac, dif_kmac_irq_t irq,
dif_irq_type_t *type) {
if (kmac == NULL || type == NULL || irq == kDifKmacIrqKmacErr + 1) {
return kDifBadArg;
}
*type = irq_types[irq];
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_get_state(const dif_kmac_t *kmac,
dif_kmac_irq_state_snapshot_t *snapshot) {
if (kmac == NULL || snapshot == NULL) {
return kDifBadArg;
}
*snapshot = mmio_region_read32(kmac->base_addr, KMAC_INTR_STATE_REG_OFFSET);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_acknowledge_state(
const dif_kmac_t *kmac, dif_kmac_irq_state_snapshot_t snapshot) {
if (kmac == NULL) {
return kDifBadArg;
}
mmio_region_write32(kmac->base_addr, KMAC_INTR_STATE_REG_OFFSET, snapshot);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_is_pending(const dif_kmac_t *kmac, dif_kmac_irq_t irq,
bool *is_pending) {
if (kmac == NULL || is_pending == NULL) {
return kDifBadArg;
}
bitfield_bit32_index_t index;
if (!kmac_get_irq_bit_index(irq, &index)) {
return kDifBadArg;
}
uint32_t intr_state_reg =
mmio_region_read32(kmac->base_addr, KMAC_INTR_STATE_REG_OFFSET);
*is_pending = bitfield_bit32_read(intr_state_reg, index);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_acknowledge_all(const dif_kmac_t *kmac) {
if (kmac == NULL) {
return kDifBadArg;
}
// Writing to the register clears the corresponding bits (Write-one clear).
mmio_region_write32(kmac->base_addr, KMAC_INTR_STATE_REG_OFFSET, UINT32_MAX);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_acknowledge(const dif_kmac_t *kmac,
dif_kmac_irq_t irq) {
if (kmac == NULL) {
return kDifBadArg;
}
bitfield_bit32_index_t index;
if (!kmac_get_irq_bit_index(irq, &index)) {
return kDifBadArg;
}
// Writing to the register clears the corresponding bits (Write-one clear).
uint32_t intr_state_reg = bitfield_bit32_write(0, index, true);
mmio_region_write32(kmac->base_addr, KMAC_INTR_STATE_REG_OFFSET,
intr_state_reg);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_force(const dif_kmac_t *kmac, dif_kmac_irq_t irq,
const bool val) {
if (kmac == NULL) {
return kDifBadArg;
}
bitfield_bit32_index_t index;
if (!kmac_get_irq_bit_index(irq, &index)) {
return kDifBadArg;
}
uint32_t intr_test_reg = bitfield_bit32_write(0, index, val);
mmio_region_write32(kmac->base_addr, KMAC_INTR_TEST_REG_OFFSET,
intr_test_reg);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_get_enabled(const dif_kmac_t *kmac,
dif_kmac_irq_t irq, dif_toggle_t *state) {
if (kmac == NULL || state == NULL) {
return kDifBadArg;
}
bitfield_bit32_index_t index;
if (!kmac_get_irq_bit_index(irq, &index)) {
return kDifBadArg;
}
uint32_t intr_enable_reg =
mmio_region_read32(kmac->base_addr, KMAC_INTR_ENABLE_REG_OFFSET);
bool is_enabled = bitfield_bit32_read(intr_enable_reg, index);
*state = is_enabled ? kDifToggleEnabled : kDifToggleDisabled;
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_set_enabled(const dif_kmac_t *kmac,
dif_kmac_irq_t irq, dif_toggle_t state) {
if (kmac == NULL) {
return kDifBadArg;
}
bitfield_bit32_index_t index;
if (!kmac_get_irq_bit_index(irq, &index)) {
return kDifBadArg;
}
uint32_t intr_enable_reg =
mmio_region_read32(kmac->base_addr, KMAC_INTR_ENABLE_REG_OFFSET);
bool enable_bit = (state == kDifToggleEnabled) ? true : false;
intr_enable_reg = bitfield_bit32_write(intr_enable_reg, index, enable_bit);
mmio_region_write32(kmac->base_addr, KMAC_INTR_ENABLE_REG_OFFSET,
intr_enable_reg);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_disable_all(
const dif_kmac_t *kmac, dif_kmac_irq_enable_snapshot_t *snapshot) {
if (kmac == NULL) {
return kDifBadArg;
}
// Pass the current interrupt state to the caller, if requested.
if (snapshot != NULL) {
*snapshot =
mmio_region_read32(kmac->base_addr, KMAC_INTR_ENABLE_REG_OFFSET);
}
// Disable all interrupts.
mmio_region_write32(kmac->base_addr, KMAC_INTR_ENABLE_REG_OFFSET, 0u);
return kDifOk;
}
OT_WARN_UNUSED_RESULT
dif_result_t dif_kmac_irq_restore_all(
const dif_kmac_t *kmac, const dif_kmac_irq_enable_snapshot_t *snapshot) {
if (kmac == NULL || snapshot == NULL) {
return kDifBadArg;
}
mmio_region_write32(kmac->base_addr, KMAC_INTR_ENABLE_REG_OFFSET, *snapshot);
return kDifOk;
}