blob: 106c0936764c35c8d97ad35f4a7bb426278630fb [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module rbox_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output rbox_reg_pkg::rbox_reg2hw_t reg2hw, // Write
input rbox_reg_pkg::rbox_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import rbox_reg_pkg::* ;
localparam int AW = 7;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_qs;
logic intr_state_wd;
logic intr_state_we;
logic intr_enable_qs;
logic intr_enable_wd;
logic intr_enable_we;
logic intr_test_wd;
logic intr_test_we;
logic regwen_qs;
logic regwen_wd;
logic regwen_we;
logic [15:0] ec_rst_ctl_qs;
logic [15:0] ec_rst_ctl_wd;
logic ec_rst_ctl_we;
logic key_invert_ctl_key0_in_qs;
logic key_invert_ctl_key0_in_wd;
logic key_invert_ctl_key0_in_we;
logic key_invert_ctl_key0_out_qs;
logic key_invert_ctl_key0_out_wd;
logic key_invert_ctl_key0_out_we;
logic key_invert_ctl_key1_in_qs;
logic key_invert_ctl_key1_in_wd;
logic key_invert_ctl_key1_in_we;
logic key_invert_ctl_key1_out_qs;
logic key_invert_ctl_key1_out_wd;
logic key_invert_ctl_key1_out_we;
logic key_invert_ctl_key2_in_qs;
logic key_invert_ctl_key2_in_wd;
logic key_invert_ctl_key2_in_we;
logic key_invert_ctl_key2_out_qs;
logic key_invert_ctl_key2_out_wd;
logic key_invert_ctl_key2_out_we;
logic key_invert_ctl_pwrb_in_qs;
logic key_invert_ctl_pwrb_in_wd;
logic key_invert_ctl_pwrb_in_we;
logic key_invert_ctl_pwrb_out_qs;
logic key_invert_ctl_pwrb_out_wd;
logic key_invert_ctl_pwrb_out_we;
logic key_invert_ctl_ac_present_qs;
logic key_invert_ctl_ac_present_wd;
logic key_invert_ctl_ac_present_we;
logic key_invert_ctl_bat_disable_qs;
logic key_invert_ctl_bat_disable_wd;
logic key_invert_ctl_bat_disable_we;
logic pin_allowed_ctl_bat_disable_0_qs;
logic pin_allowed_ctl_bat_disable_0_wd;
logic pin_allowed_ctl_bat_disable_0_we;
logic pin_allowed_ctl_ec_rst_l_0_qs;
logic pin_allowed_ctl_ec_rst_l_0_wd;
logic pin_allowed_ctl_ec_rst_l_0_we;
logic pin_allowed_ctl_pwrb_out_0_qs;
logic pin_allowed_ctl_pwrb_out_0_wd;
logic pin_allowed_ctl_pwrb_out_0_we;
logic pin_allowed_ctl_key0_out_0_qs;
logic pin_allowed_ctl_key0_out_0_wd;
logic pin_allowed_ctl_key0_out_0_we;
logic pin_allowed_ctl_key1_out_0_qs;
logic pin_allowed_ctl_key1_out_0_wd;
logic pin_allowed_ctl_key1_out_0_we;
logic pin_allowed_ctl_key2_out_0_qs;
logic pin_allowed_ctl_key2_out_0_wd;
logic pin_allowed_ctl_key2_out_0_we;
logic pin_allowed_ctl_bat_disable_1_qs;
logic pin_allowed_ctl_bat_disable_1_wd;
logic pin_allowed_ctl_bat_disable_1_we;
logic pin_allowed_ctl_ec_rst_l_1_qs;
logic pin_allowed_ctl_ec_rst_l_1_wd;
logic pin_allowed_ctl_ec_rst_l_1_we;
logic pin_allowed_ctl_pwrb_out_1_qs;
logic pin_allowed_ctl_pwrb_out_1_wd;
logic pin_allowed_ctl_pwrb_out_1_we;
logic pin_allowed_ctl_key0_out_1_qs;
logic pin_allowed_ctl_key0_out_1_wd;
logic pin_allowed_ctl_key0_out_1_we;
logic pin_allowed_ctl_key1_out_1_qs;
logic pin_allowed_ctl_key1_out_1_wd;
logic pin_allowed_ctl_key1_out_1_we;
logic pin_allowed_ctl_key2_out_1_qs;
logic pin_allowed_ctl_key2_out_1_wd;
logic pin_allowed_ctl_key2_out_1_we;
logic pin_out_ctl_bat_disable_qs;
logic pin_out_ctl_bat_disable_wd;
logic pin_out_ctl_bat_disable_we;
logic pin_out_ctl_ec_rst_l_qs;
logic pin_out_ctl_ec_rst_l_wd;
logic pin_out_ctl_ec_rst_l_we;
logic pin_out_ctl_pwrb_out_qs;
logic pin_out_ctl_pwrb_out_wd;
logic pin_out_ctl_pwrb_out_we;
logic pin_out_ctl_key0_out_qs;
logic pin_out_ctl_key0_out_wd;
logic pin_out_ctl_key0_out_we;
logic pin_out_ctl_key1_out_qs;
logic pin_out_ctl_key1_out_wd;
logic pin_out_ctl_key1_out_we;
logic pin_out_ctl_key2_out_qs;
logic pin_out_ctl_key2_out_wd;
logic pin_out_ctl_key2_out_we;
logic pin_out_value_bat_disable_qs;
logic pin_out_value_bat_disable_wd;
logic pin_out_value_bat_disable_we;
logic pin_out_value_ec_rst_l_qs;
logic pin_out_value_ec_rst_l_wd;
logic pin_out_value_ec_rst_l_we;
logic pin_out_value_pwrb_out_qs;
logic pin_out_value_pwrb_out_wd;
logic pin_out_value_pwrb_out_we;
logic pin_out_value_key0_out_qs;
logic pin_out_value_key0_out_wd;
logic pin_out_value_key0_out_we;
logic pin_out_value_key1_out_qs;
logic pin_out_value_key1_out_wd;
logic pin_out_value_key1_out_we;
logic pin_out_value_key2_out_qs;
logic pin_out_value_key2_out_wd;
logic pin_out_value_key2_out_we;
logic pin_in_value_ac_present_qs;
logic pin_in_value_ec_rst_l_qs;
logic pin_in_value_pwrb_in_qs;
logic pin_in_value_key0_in_qs;
logic pin_in_value_key1_in_qs;
logic pin_in_value_key2_in_qs;
logic key_intr_ctl_pwrb_in_h2l_qs;
logic key_intr_ctl_pwrb_in_h2l_wd;
logic key_intr_ctl_pwrb_in_h2l_we;
logic key_intr_ctl_key0_in_h2l_qs;
logic key_intr_ctl_key0_in_h2l_wd;
logic key_intr_ctl_key0_in_h2l_we;
logic key_intr_ctl_key1_in_h2l_qs;
logic key_intr_ctl_key1_in_h2l_wd;
logic key_intr_ctl_key1_in_h2l_we;
logic key_intr_ctl_key2_in_h2l_qs;
logic key_intr_ctl_key2_in_h2l_wd;
logic key_intr_ctl_key2_in_h2l_we;
logic key_intr_ctl_ac_present_h2l_qs;
logic key_intr_ctl_ac_present_h2l_wd;
logic key_intr_ctl_ac_present_h2l_we;
logic key_intr_ctl_ec_rst_l_h2l_qs;
logic key_intr_ctl_ec_rst_l_h2l_wd;
logic key_intr_ctl_ec_rst_l_h2l_we;
logic key_intr_ctl_pwrb_in_l2h_qs;
logic key_intr_ctl_pwrb_in_l2h_wd;
logic key_intr_ctl_pwrb_in_l2h_we;
logic key_intr_ctl_key0_in_l2h_qs;
logic key_intr_ctl_key0_in_l2h_wd;
logic key_intr_ctl_key0_in_l2h_we;
logic key_intr_ctl_key1_in_l2h_qs;
logic key_intr_ctl_key1_in_l2h_wd;
logic key_intr_ctl_key1_in_l2h_we;
logic key_intr_ctl_key2_in_l2h_qs;
logic key_intr_ctl_key2_in_l2h_wd;
logic key_intr_ctl_key2_in_l2h_we;
logic key_intr_ctl_ac_present_l2h_qs;
logic key_intr_ctl_ac_present_l2h_wd;
logic key_intr_ctl_ac_present_l2h_we;
logic key_intr_ctl_ec_rst_l_l2h_qs;
logic key_intr_ctl_ec_rst_l_l2h_wd;
logic key_intr_ctl_ec_rst_l_l2h_we;
logic [15:0] key_intr_debounce_ctl_qs;
logic [15:0] key_intr_debounce_ctl_wd;
logic key_intr_debounce_ctl_we;
logic [15:0] auto_block_debounce_ctl_debounce_timer_qs;
logic [15:0] auto_block_debounce_ctl_debounce_timer_wd;
logic auto_block_debounce_ctl_debounce_timer_we;
logic auto_block_debounce_ctl_auto_block_enable_qs;
logic auto_block_debounce_ctl_auto_block_enable_wd;
logic auto_block_debounce_ctl_auto_block_enable_we;
logic auto_block_out_ctl_key0_out_sel_qs;
logic auto_block_out_ctl_key0_out_sel_wd;
logic auto_block_out_ctl_key0_out_sel_we;
logic auto_block_out_ctl_key1_out_sel_qs;
logic auto_block_out_ctl_key1_out_sel_wd;
logic auto_block_out_ctl_key1_out_sel_we;
logic auto_block_out_ctl_key2_out_sel_qs;
logic auto_block_out_ctl_key2_out_sel_wd;
logic auto_block_out_ctl_key2_out_sel_we;
logic auto_block_out_ctl_key0_out_value_qs;
logic auto_block_out_ctl_key0_out_value_wd;
logic auto_block_out_ctl_key0_out_value_we;
logic auto_block_out_ctl_key1_out_value_qs;
logic auto_block_out_ctl_key1_out_value_wd;
logic auto_block_out_ctl_key1_out_value_we;
logic auto_block_out_ctl_key2_out_value_qs;
logic auto_block_out_ctl_key2_out_value_wd;
logic auto_block_out_ctl_key2_out_value_we;
logic com_sel_ctl_0_key0_in_sel_0_qs;
logic com_sel_ctl_0_key0_in_sel_0_wd;
logic com_sel_ctl_0_key0_in_sel_0_we;
logic com_sel_ctl_0_key1_in_sel_0_qs;
logic com_sel_ctl_0_key1_in_sel_0_wd;
logic com_sel_ctl_0_key1_in_sel_0_we;
logic com_sel_ctl_0_key2_in_sel_0_qs;
logic com_sel_ctl_0_key2_in_sel_0_wd;
logic com_sel_ctl_0_key2_in_sel_0_we;
logic com_sel_ctl_0_pwrb_in_sel_0_qs;
logic com_sel_ctl_0_pwrb_in_sel_0_wd;
logic com_sel_ctl_0_pwrb_in_sel_0_we;
logic com_sel_ctl_0_ac_present_sel_0_qs;
logic com_sel_ctl_0_ac_present_sel_0_wd;
logic com_sel_ctl_0_ac_present_sel_0_we;
logic com_sel_ctl_1_key0_in_sel_1_qs;
logic com_sel_ctl_1_key0_in_sel_1_wd;
logic com_sel_ctl_1_key0_in_sel_1_we;
logic com_sel_ctl_1_key1_in_sel_1_qs;
logic com_sel_ctl_1_key1_in_sel_1_wd;
logic com_sel_ctl_1_key1_in_sel_1_we;
logic com_sel_ctl_1_key2_in_sel_1_qs;
logic com_sel_ctl_1_key2_in_sel_1_wd;
logic com_sel_ctl_1_key2_in_sel_1_we;
logic com_sel_ctl_1_pwrb_in_sel_1_qs;
logic com_sel_ctl_1_pwrb_in_sel_1_wd;
logic com_sel_ctl_1_pwrb_in_sel_1_we;
logic com_sel_ctl_1_ac_present_sel_1_qs;
logic com_sel_ctl_1_ac_present_sel_1_wd;
logic com_sel_ctl_1_ac_present_sel_1_we;
logic com_sel_ctl_2_key0_in_sel_2_qs;
logic com_sel_ctl_2_key0_in_sel_2_wd;
logic com_sel_ctl_2_key0_in_sel_2_we;
logic com_sel_ctl_2_key1_in_sel_2_qs;
logic com_sel_ctl_2_key1_in_sel_2_wd;
logic com_sel_ctl_2_key1_in_sel_2_we;
logic com_sel_ctl_2_key2_in_sel_2_qs;
logic com_sel_ctl_2_key2_in_sel_2_wd;
logic com_sel_ctl_2_key2_in_sel_2_we;
logic com_sel_ctl_2_pwrb_in_sel_2_qs;
logic com_sel_ctl_2_pwrb_in_sel_2_wd;
logic com_sel_ctl_2_pwrb_in_sel_2_we;
logic com_sel_ctl_2_ac_present_sel_2_qs;
logic com_sel_ctl_2_ac_present_sel_2_wd;
logic com_sel_ctl_2_ac_present_sel_2_we;
logic com_sel_ctl_3_key0_in_sel_3_qs;
logic com_sel_ctl_3_key0_in_sel_3_wd;
logic com_sel_ctl_3_key0_in_sel_3_we;
logic com_sel_ctl_3_key1_in_sel_3_qs;
logic com_sel_ctl_3_key1_in_sel_3_wd;
logic com_sel_ctl_3_key1_in_sel_3_we;
logic com_sel_ctl_3_key2_in_sel_3_qs;
logic com_sel_ctl_3_key2_in_sel_3_wd;
logic com_sel_ctl_3_key2_in_sel_3_we;
logic com_sel_ctl_3_pwrb_in_sel_3_qs;
logic com_sel_ctl_3_pwrb_in_sel_3_wd;
logic com_sel_ctl_3_pwrb_in_sel_3_we;
logic com_sel_ctl_3_ac_present_sel_3_qs;
logic com_sel_ctl_3_ac_present_sel_3_wd;
logic com_sel_ctl_3_ac_present_sel_3_we;
logic [31:0] com_det_ctl_0_qs;
logic [31:0] com_det_ctl_0_wd;
logic com_det_ctl_0_we;
logic [31:0] com_det_ctl_1_qs;
logic [31:0] com_det_ctl_1_wd;
logic com_det_ctl_1_we;
logic [31:0] com_det_ctl_2_qs;
logic [31:0] com_det_ctl_2_wd;
logic com_det_ctl_2_we;
logic [31:0] com_det_ctl_3_qs;
logic [31:0] com_det_ctl_3_wd;
logic com_det_ctl_3_we;
logic com_out_ctl_0_bat_disable_0_qs;
logic com_out_ctl_0_bat_disable_0_wd;
logic com_out_ctl_0_bat_disable_0_we;
logic com_out_ctl_0_interrupt_0_qs;
logic com_out_ctl_0_interrupt_0_wd;
logic com_out_ctl_0_interrupt_0_we;
logic com_out_ctl_0_ec_rst_0_qs;
logic com_out_ctl_0_ec_rst_0_wd;
logic com_out_ctl_0_ec_rst_0_we;
logic com_out_ctl_0_gsc_rst_0_qs;
logic com_out_ctl_0_gsc_rst_0_wd;
logic com_out_ctl_0_gsc_rst_0_we;
logic com_out_ctl_1_bat_disable_1_qs;
logic com_out_ctl_1_bat_disable_1_wd;
logic com_out_ctl_1_bat_disable_1_we;
logic com_out_ctl_1_interrupt_1_qs;
logic com_out_ctl_1_interrupt_1_wd;
logic com_out_ctl_1_interrupt_1_we;
logic com_out_ctl_1_ec_rst_1_qs;
logic com_out_ctl_1_ec_rst_1_wd;
logic com_out_ctl_1_ec_rst_1_we;
logic com_out_ctl_1_gsc_rst_1_qs;
logic com_out_ctl_1_gsc_rst_1_wd;
logic com_out_ctl_1_gsc_rst_1_we;
logic com_out_ctl_2_bat_disable_2_qs;
logic com_out_ctl_2_bat_disable_2_wd;
logic com_out_ctl_2_bat_disable_2_we;
logic com_out_ctl_2_interrupt_2_qs;
logic com_out_ctl_2_interrupt_2_wd;
logic com_out_ctl_2_interrupt_2_we;
logic com_out_ctl_2_ec_rst_2_qs;
logic com_out_ctl_2_ec_rst_2_wd;
logic com_out_ctl_2_ec_rst_2_we;
logic com_out_ctl_2_gsc_rst_2_qs;
logic com_out_ctl_2_gsc_rst_2_wd;
logic com_out_ctl_2_gsc_rst_2_we;
logic com_out_ctl_3_bat_disable_3_qs;
logic com_out_ctl_3_bat_disable_3_wd;
logic com_out_ctl_3_bat_disable_3_we;
logic com_out_ctl_3_interrupt_3_qs;
logic com_out_ctl_3_interrupt_3_wd;
logic com_out_ctl_3_interrupt_3_we;
logic com_out_ctl_3_ec_rst_3_qs;
logic com_out_ctl_3_ec_rst_3_wd;
logic com_out_ctl_3_ec_rst_3_we;
logic com_out_ctl_3_gsc_rst_3_qs;
logic com_out_ctl_3_gsc_rst_3_wd;
logic com_out_ctl_3_gsc_rst_3_we;
logic combo_intr_status_combo0_h2l_qs;
logic combo_intr_status_combo0_h2l_wd;
logic combo_intr_status_combo0_h2l_we;
logic combo_intr_status_combo1_h2l_qs;
logic combo_intr_status_combo1_h2l_wd;
logic combo_intr_status_combo1_h2l_we;
logic combo_intr_status_combo2_h2l_qs;
logic combo_intr_status_combo2_h2l_wd;
logic combo_intr_status_combo2_h2l_we;
logic combo_intr_status_combo3_h2l_qs;
logic combo_intr_status_combo3_h2l_wd;
logic combo_intr_status_combo3_h2l_we;
logic key_intr_status_pwrb_h2l_qs;
logic key_intr_status_pwrb_h2l_wd;
logic key_intr_status_pwrb_h2l_we;
logic key_intr_status_key0_in_h2l_qs;
logic key_intr_status_key0_in_h2l_wd;
logic key_intr_status_key0_in_h2l_we;
logic key_intr_status_key1_in_h2l_qs;
logic key_intr_status_key1_in_h2l_wd;
logic key_intr_status_key1_in_h2l_we;
logic key_intr_status_key2_in_h2l_qs;
logic key_intr_status_key2_in_h2l_wd;
logic key_intr_status_key2_in_h2l_we;
logic key_intr_status_ac_present_h2l_qs;
logic key_intr_status_ac_present_h2l_wd;
logic key_intr_status_ac_present_h2l_we;
logic key_intr_status_ec_rst_l_h2l_qs;
logic key_intr_status_ec_rst_l_h2l_wd;
logic key_intr_status_ec_rst_l_h2l_we;
logic key_intr_status_pwrb_l2h_qs;
logic key_intr_status_pwrb_l2h_wd;
logic key_intr_status_pwrb_l2h_we;
logic key_intr_status_key0_in_l2h_qs;
logic key_intr_status_key0_in_l2h_wd;
logic key_intr_status_key0_in_l2h_we;
logic key_intr_status_key1_in_l2h_qs;
logic key_intr_status_key1_in_l2h_wd;
logic key_intr_status_key1_in_l2h_we;
logic key_intr_status_key2_in_l2h_qs;
logic key_intr_status_key2_in_l2h_wd;
logic key_intr_status_key2_in_l2h_we;
logic key_intr_status_ac_present_l2h_qs;
logic key_intr_status_ac_present_l2h_wd;
logic key_intr_status_ac_present_l2h_we;
logic key_intr_status_ec_rst_l_l2h_qs;
logic key_intr_status_ec_rst_l_l2h_wd;
logic key_intr_status_ec_rst_l_l2h_we;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q ),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q ),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
prim_subreg_ext #(
.DW (1)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.qe),
.q (reg2hw.intr_test.q ),
.qs ()
);
// R[regwen]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_regwen (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (regwen_we),
.wd (regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (regwen_qs)
);
// R[ec_rst_ctl]: V(False)
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7d0)
) u_ec_rst_ctl (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (ec_rst_ctl_we & regwen_qs),
.wd (ec_rst_ctl_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.ec_rst_ctl.qe),
.q (reg2hw.ec_rst_ctl.q ),
// to register interface (read)
.qs (ec_rst_ctl_qs)
);
// R[key_invert_ctl]: V(False)
// F[key0_in]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_key0_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_key0_in_we & regwen_qs),
.wd (key_invert_ctl_key0_in_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.key0_in.q ),
// to register interface (read)
.qs (key_invert_ctl_key0_in_qs)
);
// F[key0_out]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_key0_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_key0_out_we & regwen_qs),
.wd (key_invert_ctl_key0_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.key0_out.q ),
// to register interface (read)
.qs (key_invert_ctl_key0_out_qs)
);
// F[key1_in]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_key1_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_key1_in_we & regwen_qs),
.wd (key_invert_ctl_key1_in_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.key1_in.q ),
// to register interface (read)
.qs (key_invert_ctl_key1_in_qs)
);
// F[key1_out]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_key1_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_key1_out_we & regwen_qs),
.wd (key_invert_ctl_key1_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.key1_out.q ),
// to register interface (read)
.qs (key_invert_ctl_key1_out_qs)
);
// F[key2_in]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_key2_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_key2_in_we & regwen_qs),
.wd (key_invert_ctl_key2_in_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.key2_in.q ),
// to register interface (read)
.qs (key_invert_ctl_key2_in_qs)
);
// F[key2_out]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_key2_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_key2_out_we & regwen_qs),
.wd (key_invert_ctl_key2_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.key2_out.q ),
// to register interface (read)
.qs (key_invert_ctl_key2_out_qs)
);
// F[pwrb_in]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_pwrb_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_pwrb_in_we & regwen_qs),
.wd (key_invert_ctl_pwrb_in_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.pwrb_in.q ),
// to register interface (read)
.qs (key_invert_ctl_pwrb_in_qs)
);
// F[pwrb_out]: 7:7
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_pwrb_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_pwrb_out_we & regwen_qs),
.wd (key_invert_ctl_pwrb_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.pwrb_out.q ),
// to register interface (read)
.qs (key_invert_ctl_pwrb_out_qs)
);
// F[ac_present]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_ac_present (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_ac_present_we & regwen_qs),
.wd (key_invert_ctl_ac_present_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.ac_present.q ),
// to register interface (read)
.qs (key_invert_ctl_ac_present_qs)
);
// F[bat_disable]: 9:9
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_invert_ctl_bat_disable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_invert_ctl_bat_disable_we & regwen_qs),
.wd (key_invert_ctl_bat_disable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_invert_ctl.bat_disable.q ),
// to register interface (read)
.qs (key_invert_ctl_bat_disable_qs)
);
// R[pin_allowed_ctl]: V(False)
// F[bat_disable_0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_bat_disable_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_bat_disable_0_we & regwen_qs),
.wd (pin_allowed_ctl_bat_disable_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.bat_disable_0.q ),
// to register interface (read)
.qs (pin_allowed_ctl_bat_disable_0_qs)
);
// F[ec_rst_l_0]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h1)
) u_pin_allowed_ctl_ec_rst_l_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_ec_rst_l_0_we & regwen_qs),
.wd (pin_allowed_ctl_ec_rst_l_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.ec_rst_l_0.q ),
// to register interface (read)
.qs (pin_allowed_ctl_ec_rst_l_0_qs)
);
// F[pwrb_out_0]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_pwrb_out_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_pwrb_out_0_we & regwen_qs),
.wd (pin_allowed_ctl_pwrb_out_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.pwrb_out_0.q ),
// to register interface (read)
.qs (pin_allowed_ctl_pwrb_out_0_qs)
);
// F[key0_out_0]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_key0_out_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_key0_out_0_we & regwen_qs),
.wd (pin_allowed_ctl_key0_out_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.key0_out_0.q ),
// to register interface (read)
.qs (pin_allowed_ctl_key0_out_0_qs)
);
// F[key1_out_0]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_key1_out_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_key1_out_0_we & regwen_qs),
.wd (pin_allowed_ctl_key1_out_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.key1_out_0.q ),
// to register interface (read)
.qs (pin_allowed_ctl_key1_out_0_qs)
);
// F[key2_out_0]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_key2_out_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_key2_out_0_we & regwen_qs),
.wd (pin_allowed_ctl_key2_out_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.key2_out_0.q ),
// to register interface (read)
.qs (pin_allowed_ctl_key2_out_0_qs)
);
// F[bat_disable_1]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_bat_disable_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_bat_disable_1_we & regwen_qs),
.wd (pin_allowed_ctl_bat_disable_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.bat_disable_1.q ),
// to register interface (read)
.qs (pin_allowed_ctl_bat_disable_1_qs)
);
// F[ec_rst_l_1]: 7:7
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_ec_rst_l_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_ec_rst_l_1_we & regwen_qs),
.wd (pin_allowed_ctl_ec_rst_l_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.ec_rst_l_1.q ),
// to register interface (read)
.qs (pin_allowed_ctl_ec_rst_l_1_qs)
);
// F[pwrb_out_1]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_pwrb_out_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_pwrb_out_1_we & regwen_qs),
.wd (pin_allowed_ctl_pwrb_out_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.pwrb_out_1.q ),
// to register interface (read)
.qs (pin_allowed_ctl_pwrb_out_1_qs)
);
// F[key0_out_1]: 9:9
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_key0_out_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_key0_out_1_we & regwen_qs),
.wd (pin_allowed_ctl_key0_out_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.key0_out_1.q ),
// to register interface (read)
.qs (pin_allowed_ctl_key0_out_1_qs)
);
// F[key1_out_1]: 10:10
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_key1_out_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_key1_out_1_we & regwen_qs),
.wd (pin_allowed_ctl_key1_out_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.key1_out_1.q ),
// to register interface (read)
.qs (pin_allowed_ctl_key1_out_1_qs)
);
// F[key2_out_1]: 11:11
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_allowed_ctl_key2_out_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (pin_allowed_ctl_key2_out_1_we & regwen_qs),
.wd (pin_allowed_ctl_key2_out_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_allowed_ctl.key2_out_1.q ),
// to register interface (read)
.qs (pin_allowed_ctl_key2_out_1_qs)
);
// R[pin_out_ctl]: V(False)
// F[bat_disable]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_ctl_bat_disable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_ctl_bat_disable_we),
.wd (pin_out_ctl_bat_disable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_ctl.bat_disable.q ),
// to register interface (read)
.qs (pin_out_ctl_bat_disable_qs)
);
// F[ec_rst_l]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h1)
) u_pin_out_ctl_ec_rst_l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_ctl_ec_rst_l_we),
.wd (pin_out_ctl_ec_rst_l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_ctl.ec_rst_l.q ),
// to register interface (read)
.qs (pin_out_ctl_ec_rst_l_qs)
);
// F[pwrb_out]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_ctl_pwrb_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_ctl_pwrb_out_we),
.wd (pin_out_ctl_pwrb_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_ctl.pwrb_out.q ),
// to register interface (read)
.qs (pin_out_ctl_pwrb_out_qs)
);
// F[key0_out]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_ctl_key0_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_ctl_key0_out_we),
.wd (pin_out_ctl_key0_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_ctl.key0_out.q ),
// to register interface (read)
.qs (pin_out_ctl_key0_out_qs)
);
// F[key1_out]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_ctl_key1_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_ctl_key1_out_we),
.wd (pin_out_ctl_key1_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_ctl.key1_out.q ),
// to register interface (read)
.qs (pin_out_ctl_key1_out_qs)
);
// F[key2_out]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_ctl_key2_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_ctl_key2_out_we),
.wd (pin_out_ctl_key2_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_ctl.key2_out.q ),
// to register interface (read)
.qs (pin_out_ctl_key2_out_qs)
);
// R[pin_out_value]: V(False)
// F[bat_disable]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_value_bat_disable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_value_bat_disable_we),
.wd (pin_out_value_bat_disable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_value.bat_disable.q ),
// to register interface (read)
.qs (pin_out_value_bat_disable_qs)
);
// F[ec_rst_l]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_value_ec_rst_l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_value_ec_rst_l_we),
.wd (pin_out_value_ec_rst_l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_value.ec_rst_l.q ),
// to register interface (read)
.qs (pin_out_value_ec_rst_l_qs)
);
// F[pwrb_out]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_value_pwrb_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_value_pwrb_out_we),
.wd (pin_out_value_pwrb_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_value.pwrb_out.q ),
// to register interface (read)
.qs (pin_out_value_pwrb_out_qs)
);
// F[key0_out]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_value_key0_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_value_key0_out_we),
.wd (pin_out_value_key0_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_value.key0_out.q ),
// to register interface (read)
.qs (pin_out_value_key0_out_qs)
);
// F[key1_out]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_value_key1_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_value_key1_out_we),
.wd (pin_out_value_key1_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_value.key1_out.q ),
// to register interface (read)
.qs (pin_out_value_key1_out_qs)
);
// F[key2_out]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pin_out_value_key2_out (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pin_out_value_key2_out_we),
.wd (pin_out_value_key2_out_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pin_out_value.key2_out.q ),
// to register interface (read)
.qs (pin_out_value_key2_out_qs)
);
// R[pin_in_value]: V(False)
// F[ac_present]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_pin_in_value_ac_present (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.pin_in_value.ac_present.de),
.d (hw2reg.pin_in_value.ac_present.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (pin_in_value_ac_present_qs)
);
// F[ec_rst_l]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_pin_in_value_ec_rst_l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.pin_in_value.ec_rst_l.de),
.d (hw2reg.pin_in_value.ec_rst_l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (pin_in_value_ec_rst_l_qs)
);
// F[pwrb_in]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_pin_in_value_pwrb_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.pin_in_value.pwrb_in.de),
.d (hw2reg.pin_in_value.pwrb_in.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (pin_in_value_pwrb_in_qs)
);
// F[key0_in]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_pin_in_value_key0_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.pin_in_value.key0_in.de),
.d (hw2reg.pin_in_value.key0_in.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (pin_in_value_key0_in_qs)
);
// F[key1_in]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_pin_in_value_key1_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.pin_in_value.key1_in.de),
.d (hw2reg.pin_in_value.key1_in.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (pin_in_value_key1_in_qs)
);
// F[key2_in]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_pin_in_value_key2_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.pin_in_value.key2_in.de),
.d (hw2reg.pin_in_value.key2_in.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (pin_in_value_key2_in_qs)
);
// R[key_intr_ctl]: V(False)
// F[pwrb_in_h2l]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_pwrb_in_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_pwrb_in_h2l_we & regwen_qs),
.wd (key_intr_ctl_pwrb_in_h2l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.pwrb_in_h2l.q ),
// to register interface (read)
.qs (key_intr_ctl_pwrb_in_h2l_qs)
);
// F[key0_in_h2l]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_key0_in_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_key0_in_h2l_we & regwen_qs),
.wd (key_intr_ctl_key0_in_h2l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.key0_in_h2l.q ),
// to register interface (read)
.qs (key_intr_ctl_key0_in_h2l_qs)
);
// F[key1_in_h2l]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_key1_in_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_key1_in_h2l_we & regwen_qs),
.wd (key_intr_ctl_key1_in_h2l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.key1_in_h2l.q ),
// to register interface (read)
.qs (key_intr_ctl_key1_in_h2l_qs)
);
// F[key2_in_h2l]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_key2_in_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_key2_in_h2l_we & regwen_qs),
.wd (key_intr_ctl_key2_in_h2l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.key2_in_h2l.q ),
// to register interface (read)
.qs (key_intr_ctl_key2_in_h2l_qs)
);
// F[ac_present_h2l]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_ac_present_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_ac_present_h2l_we & regwen_qs),
.wd (key_intr_ctl_ac_present_h2l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.ac_present_h2l.q ),
// to register interface (read)
.qs (key_intr_ctl_ac_present_h2l_qs)
);
// F[ec_rst_l_h2l]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_ec_rst_l_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_ec_rst_l_h2l_we & regwen_qs),
.wd (key_intr_ctl_ec_rst_l_h2l_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.ec_rst_l_h2l.q ),
// to register interface (read)
.qs (key_intr_ctl_ec_rst_l_h2l_qs)
);
// F[pwrb_in_l2h]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_pwrb_in_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_pwrb_in_l2h_we & regwen_qs),
.wd (key_intr_ctl_pwrb_in_l2h_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.pwrb_in_l2h.q ),
// to register interface (read)
.qs (key_intr_ctl_pwrb_in_l2h_qs)
);
// F[key0_in_l2h]: 9:9
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_key0_in_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_key0_in_l2h_we & regwen_qs),
.wd (key_intr_ctl_key0_in_l2h_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.key0_in_l2h.q ),
// to register interface (read)
.qs (key_intr_ctl_key0_in_l2h_qs)
);
// F[key1_in_l2h]: 10:10
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_key1_in_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_key1_in_l2h_we & regwen_qs),
.wd (key_intr_ctl_key1_in_l2h_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.key1_in_l2h.q ),
// to register interface (read)
.qs (key_intr_ctl_key1_in_l2h_qs)
);
// F[key2_in_l2h]: 11:11
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_key2_in_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_key2_in_l2h_we & regwen_qs),
.wd (key_intr_ctl_key2_in_l2h_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.key2_in_l2h.q ),
// to register interface (read)
.qs (key_intr_ctl_key2_in_l2h_qs)
);
// F[ac_present_l2h]: 12:12
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_ac_present_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_ac_present_l2h_we & regwen_qs),
.wd (key_intr_ctl_ac_present_l2h_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.ac_present_l2h.q ),
// to register interface (read)
.qs (key_intr_ctl_ac_present_l2h_qs)
);
// F[ec_rst_l_l2h]: 13:13
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_key_intr_ctl_ec_rst_l_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_ctl_ec_rst_l_l2h_we & regwen_qs),
.wd (key_intr_ctl_ec_rst_l_l2h_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_intr_ctl.ec_rst_l_l2h.q ),
// to register interface (read)
.qs (key_intr_ctl_ec_rst_l_l2h_qs)
);
// R[key_intr_debounce_ctl]: V(False)
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_key_intr_debounce_ctl (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_intr_debounce_ctl_we & regwen_qs),
.wd (key_intr_debounce_ctl_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key_intr_debounce_ctl.qe),
.q (reg2hw.key_intr_debounce_ctl.q ),
// to register interface (read)
.qs (key_intr_debounce_ctl_qs)
);
// R[auto_block_debounce_ctl]: V(False)
// F[debounce_timer]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_auto_block_debounce_ctl_debounce_timer (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_debounce_ctl_debounce_timer_we & regwen_qs),
.wd (auto_block_debounce_ctl_debounce_timer_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.auto_block_debounce_ctl.debounce_timer.qe),
.q (reg2hw.auto_block_debounce_ctl.debounce_timer.q ),
// to register interface (read)
.qs (auto_block_debounce_ctl_debounce_timer_qs)
);
// F[auto_block_enable]: 16:16
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_auto_block_debounce_ctl_auto_block_enable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_debounce_ctl_auto_block_enable_we & regwen_qs),
.wd (auto_block_debounce_ctl_auto_block_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.auto_block_debounce_ctl.auto_block_enable.qe),
.q (reg2hw.auto_block_debounce_ctl.auto_block_enable.q ),
// to register interface (read)
.qs (auto_block_debounce_ctl_auto_block_enable_qs)
);
// R[auto_block_out_ctl]: V(False)
// F[key0_out_sel]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_auto_block_out_ctl_key0_out_sel (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_out_ctl_key0_out_sel_we & regwen_qs),
.wd (auto_block_out_ctl_key0_out_sel_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.auto_block_out_ctl.key0_out_sel.q ),
// to register interface (read)
.qs (auto_block_out_ctl_key0_out_sel_qs)
);
// F[key1_out_sel]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_auto_block_out_ctl_key1_out_sel (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_out_ctl_key1_out_sel_we & regwen_qs),
.wd (auto_block_out_ctl_key1_out_sel_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.auto_block_out_ctl.key1_out_sel.q ),
// to register interface (read)
.qs (auto_block_out_ctl_key1_out_sel_qs)
);
// F[key2_out_sel]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_auto_block_out_ctl_key2_out_sel (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_out_ctl_key2_out_sel_we & regwen_qs),
.wd (auto_block_out_ctl_key2_out_sel_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.auto_block_out_ctl.key2_out_sel.q ),
// to register interface (read)
.qs (auto_block_out_ctl_key2_out_sel_qs)
);
// F[key0_out_value]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_auto_block_out_ctl_key0_out_value (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_out_ctl_key0_out_value_we & regwen_qs),
.wd (auto_block_out_ctl_key0_out_value_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.auto_block_out_ctl.key0_out_value.q ),
// to register interface (read)
.qs (auto_block_out_ctl_key0_out_value_qs)
);
// F[key1_out_value]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_auto_block_out_ctl_key1_out_value (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_out_ctl_key1_out_value_we & regwen_qs),
.wd (auto_block_out_ctl_key1_out_value_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.auto_block_out_ctl.key1_out_value.q ),
// to register interface (read)
.qs (auto_block_out_ctl_key1_out_value_qs)
);
// F[key2_out_value]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_auto_block_out_ctl_key2_out_value (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (auto_block_out_ctl_key2_out_value_we & regwen_qs),
.wd (auto_block_out_ctl_key2_out_value_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.auto_block_out_ctl.key2_out_value.q ),
// to register interface (read)
.qs (auto_block_out_ctl_key2_out_value_qs)
);
// Subregister 0 of Multireg com_sel_ctl
// R[com_sel_ctl_0]: V(False)
// F[key0_in_sel_0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_0_key0_in_sel_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_0_key0_in_sel_0_we & regwen_qs),
.wd (com_sel_ctl_0_key0_in_sel_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[0].key0_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_0_key0_in_sel_0_qs)
);
// F[key1_in_sel_0]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_0_key1_in_sel_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_0_key1_in_sel_0_we & regwen_qs),
.wd (com_sel_ctl_0_key1_in_sel_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[0].key1_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_0_key1_in_sel_0_qs)
);
// F[key2_in_sel_0]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_0_key2_in_sel_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_0_key2_in_sel_0_we & regwen_qs),
.wd (com_sel_ctl_0_key2_in_sel_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[0].key2_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_0_key2_in_sel_0_qs)
);
// F[pwrb_in_sel_0]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_0_pwrb_in_sel_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_0_pwrb_in_sel_0_we & regwen_qs),
.wd (com_sel_ctl_0_pwrb_in_sel_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[0].pwrb_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_0_pwrb_in_sel_0_qs)
);
// F[ac_present_sel_0]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_0_ac_present_sel_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_0_ac_present_sel_0_we & regwen_qs),
.wd (com_sel_ctl_0_ac_present_sel_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[0].ac_present_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_0_ac_present_sel_0_qs)
);
// Subregister 1 of Multireg com_sel_ctl
// R[com_sel_ctl_1]: V(False)
// F[key0_in_sel_1]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_1_key0_in_sel_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_1_key0_in_sel_1_we & regwen_qs),
.wd (com_sel_ctl_1_key0_in_sel_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[1].key0_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_1_key0_in_sel_1_qs)
);
// F[key1_in_sel_1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_1_key1_in_sel_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_1_key1_in_sel_1_we & regwen_qs),
.wd (com_sel_ctl_1_key1_in_sel_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[1].key1_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_1_key1_in_sel_1_qs)
);
// F[key2_in_sel_1]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_1_key2_in_sel_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_1_key2_in_sel_1_we & regwen_qs),
.wd (com_sel_ctl_1_key2_in_sel_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[1].key2_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_1_key2_in_sel_1_qs)
);
// F[pwrb_in_sel_1]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_1_pwrb_in_sel_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_1_pwrb_in_sel_1_we & regwen_qs),
.wd (com_sel_ctl_1_pwrb_in_sel_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[1].pwrb_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_1_pwrb_in_sel_1_qs)
);
// F[ac_present_sel_1]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_1_ac_present_sel_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_1_ac_present_sel_1_we & regwen_qs),
.wd (com_sel_ctl_1_ac_present_sel_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[1].ac_present_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_1_ac_present_sel_1_qs)
);
// Subregister 2 of Multireg com_sel_ctl
// R[com_sel_ctl_2]: V(False)
// F[key0_in_sel_2]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_2_key0_in_sel_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_2_key0_in_sel_2_we & regwen_qs),
.wd (com_sel_ctl_2_key0_in_sel_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[2].key0_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_2_key0_in_sel_2_qs)
);
// F[key1_in_sel_2]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_2_key1_in_sel_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_2_key1_in_sel_2_we & regwen_qs),
.wd (com_sel_ctl_2_key1_in_sel_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[2].key1_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_2_key1_in_sel_2_qs)
);
// F[key2_in_sel_2]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_2_key2_in_sel_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_2_key2_in_sel_2_we & regwen_qs),
.wd (com_sel_ctl_2_key2_in_sel_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[2].key2_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_2_key2_in_sel_2_qs)
);
// F[pwrb_in_sel_2]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_2_pwrb_in_sel_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_2_pwrb_in_sel_2_we & regwen_qs),
.wd (com_sel_ctl_2_pwrb_in_sel_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[2].pwrb_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_2_pwrb_in_sel_2_qs)
);
// F[ac_present_sel_2]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_2_ac_present_sel_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_2_ac_present_sel_2_we & regwen_qs),
.wd (com_sel_ctl_2_ac_present_sel_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[2].ac_present_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_2_ac_present_sel_2_qs)
);
// Subregister 3 of Multireg com_sel_ctl
// R[com_sel_ctl_3]: V(False)
// F[key0_in_sel_3]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_3_key0_in_sel_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_3_key0_in_sel_3_we & regwen_qs),
.wd (com_sel_ctl_3_key0_in_sel_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[3].key0_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_3_key0_in_sel_3_qs)
);
// F[key1_in_sel_3]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_3_key1_in_sel_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_3_key1_in_sel_3_we & regwen_qs),
.wd (com_sel_ctl_3_key1_in_sel_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[3].key1_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_3_key1_in_sel_3_qs)
);
// F[key2_in_sel_3]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_3_key2_in_sel_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_3_key2_in_sel_3_we & regwen_qs),
.wd (com_sel_ctl_3_key2_in_sel_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[3].key2_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_3_key2_in_sel_3_qs)
);
// F[pwrb_in_sel_3]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_3_pwrb_in_sel_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_3_pwrb_in_sel_3_we & regwen_qs),
.wd (com_sel_ctl_3_pwrb_in_sel_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[3].pwrb_in_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_3_pwrb_in_sel_3_qs)
);
// F[ac_present_sel_3]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_sel_ctl_3_ac_present_sel_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_sel_ctl_3_ac_present_sel_3_we & regwen_qs),
.wd (com_sel_ctl_3_ac_present_sel_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_sel_ctl[3].ac_present_sel.q ),
// to register interface (read)
.qs (com_sel_ctl_3_ac_present_sel_3_qs)
);
// Subregister 0 of Multireg com_det_ctl
// R[com_det_ctl_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_com_det_ctl_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_det_ctl_0_we & regwen_qs),
.wd (com_det_ctl_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.com_det_ctl[0].qe),
.q (reg2hw.com_det_ctl[0].q ),
// to register interface (read)
.qs (com_det_ctl_0_qs)
);
// Subregister 1 of Multireg com_det_ctl
// R[com_det_ctl_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_com_det_ctl_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_det_ctl_1_we & regwen_qs),
.wd (com_det_ctl_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.com_det_ctl[1].qe),
.q (reg2hw.com_det_ctl[1].q ),
// to register interface (read)
.qs (com_det_ctl_1_qs)
);
// Subregister 2 of Multireg com_det_ctl
// R[com_det_ctl_2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_com_det_ctl_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_det_ctl_2_we & regwen_qs),
.wd (com_det_ctl_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.com_det_ctl[2].qe),
.q (reg2hw.com_det_ctl[2].q ),
// to register interface (read)
.qs (com_det_ctl_2_qs)
);
// Subregister 3 of Multireg com_det_ctl
// R[com_det_ctl_3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_com_det_ctl_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_det_ctl_3_we & regwen_qs),
.wd (com_det_ctl_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.com_det_ctl[3].qe),
.q (reg2hw.com_det_ctl[3].q ),
// to register interface (read)
.qs (com_det_ctl_3_qs)
);
// Subregister 0 of Multireg com_out_ctl
// R[com_out_ctl_0]: V(False)
// F[bat_disable_0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_0_bat_disable_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_0_bat_disable_0_we & regwen_qs),
.wd (com_out_ctl_0_bat_disable_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[0].bat_disable.q ),
// to register interface (read)
.qs (com_out_ctl_0_bat_disable_0_qs)
);
// F[interrupt_0]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_0_interrupt_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_0_interrupt_0_we & regwen_qs),
.wd (com_out_ctl_0_interrupt_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[0].interrupt.q ),
// to register interface (read)
.qs (com_out_ctl_0_interrupt_0_qs)
);
// F[ec_rst_0]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_0_ec_rst_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_0_ec_rst_0_we & regwen_qs),
.wd (com_out_ctl_0_ec_rst_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[0].ec_rst.q ),
// to register interface (read)
.qs (com_out_ctl_0_ec_rst_0_qs)
);
// F[gsc_rst_0]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_0_gsc_rst_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_0_gsc_rst_0_we & regwen_qs),
.wd (com_out_ctl_0_gsc_rst_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[0].gsc_rst.q ),
// to register interface (read)
.qs (com_out_ctl_0_gsc_rst_0_qs)
);
// Subregister 1 of Multireg com_out_ctl
// R[com_out_ctl_1]: V(False)
// F[bat_disable_1]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_1_bat_disable_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_1_bat_disable_1_we & regwen_qs),
.wd (com_out_ctl_1_bat_disable_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[1].bat_disable.q ),
// to register interface (read)
.qs (com_out_ctl_1_bat_disable_1_qs)
);
// F[interrupt_1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_1_interrupt_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_1_interrupt_1_we & regwen_qs),
.wd (com_out_ctl_1_interrupt_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[1].interrupt.q ),
// to register interface (read)
.qs (com_out_ctl_1_interrupt_1_qs)
);
// F[ec_rst_1]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_1_ec_rst_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_1_ec_rst_1_we & regwen_qs),
.wd (com_out_ctl_1_ec_rst_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[1].ec_rst.q ),
// to register interface (read)
.qs (com_out_ctl_1_ec_rst_1_qs)
);
// F[gsc_rst_1]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_1_gsc_rst_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_1_gsc_rst_1_we & regwen_qs),
.wd (com_out_ctl_1_gsc_rst_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[1].gsc_rst.q ),
// to register interface (read)
.qs (com_out_ctl_1_gsc_rst_1_qs)
);
// Subregister 2 of Multireg com_out_ctl
// R[com_out_ctl_2]: V(False)
// F[bat_disable_2]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_2_bat_disable_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_2_bat_disable_2_we & regwen_qs),
.wd (com_out_ctl_2_bat_disable_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[2].bat_disable.q ),
// to register interface (read)
.qs (com_out_ctl_2_bat_disable_2_qs)
);
// F[interrupt_2]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_2_interrupt_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_2_interrupt_2_we & regwen_qs),
.wd (com_out_ctl_2_interrupt_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[2].interrupt.q ),
// to register interface (read)
.qs (com_out_ctl_2_interrupt_2_qs)
);
// F[ec_rst_2]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_2_ec_rst_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_2_ec_rst_2_we & regwen_qs),
.wd (com_out_ctl_2_ec_rst_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[2].ec_rst.q ),
// to register interface (read)
.qs (com_out_ctl_2_ec_rst_2_qs)
);
// F[gsc_rst_2]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_2_gsc_rst_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_2_gsc_rst_2_we & regwen_qs),
.wd (com_out_ctl_2_gsc_rst_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[2].gsc_rst.q ),
// to register interface (read)
.qs (com_out_ctl_2_gsc_rst_2_qs)
);
// Subregister 3 of Multireg com_out_ctl
// R[com_out_ctl_3]: V(False)
// F[bat_disable_3]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_3_bat_disable_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_3_bat_disable_3_we & regwen_qs),
.wd (com_out_ctl_3_bat_disable_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[3].bat_disable.q ),
// to register interface (read)
.qs (com_out_ctl_3_bat_disable_3_qs)
);
// F[interrupt_3]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_3_interrupt_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_3_interrupt_3_we & regwen_qs),
.wd (com_out_ctl_3_interrupt_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[3].interrupt.q ),
// to register interface (read)
.qs (com_out_ctl_3_interrupt_3_qs)
);
// F[ec_rst_3]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_3_ec_rst_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_3_ec_rst_3_we & regwen_qs),
.wd (com_out_ctl_3_ec_rst_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[3].ec_rst.q ),
// to register interface (read)
.qs (com_out_ctl_3_ec_rst_3_qs)
);
// F[gsc_rst_3]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_com_out_ctl_3_gsc_rst_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (com_out_ctl_3_gsc_rst_3_we & regwen_qs),
.wd (com_out_ctl_3_gsc_rst_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.com_out_ctl[3].gsc_rst.q ),
// to register interface (read)
.qs (com_out_ctl_3_gsc_rst_3_qs)
);
// R[combo_intr_status]: V(False)
// F[combo0_h2l]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_combo_intr_status_combo0_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (combo_intr_status_combo0_h2l_we),
.wd (combo_intr_status_combo0_h2l_wd),
// from internal hardware
.de (hw2reg.combo_intr_status.combo0_h2l.de),
.d (hw2reg.combo_intr_status.combo0_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (combo_intr_status_combo0_h2l_qs)
);
// F[combo1_h2l]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_combo_intr_status_combo1_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (combo_intr_status_combo1_h2l_we),
.wd (combo_intr_status_combo1_h2l_wd),
// from internal hardware
.de (hw2reg.combo_intr_status.combo1_h2l.de),
.d (hw2reg.combo_intr_status.combo1_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (combo_intr_status_combo1_h2l_qs)
);
// F[combo2_h2l]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_combo_intr_status_combo2_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (combo_intr_status_combo2_h2l_we),
.wd (combo_intr_status_combo2_h2l_wd),
// from internal hardware
.de (hw2reg.combo_intr_status.combo2_h2l.de),
.d (hw2reg.combo_intr_status.combo2_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (combo_intr_status_combo2_h2l_qs)
);
// F[combo3_h2l]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_combo_intr_status_combo3_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (combo_intr_status_combo3_h2l_we),
.wd (combo_intr_status_combo3_h2l_wd),
// from internal hardware
.de (hw2reg.combo_intr_status.combo3_h2l.de),
.d (hw2reg.combo_intr_status.combo3_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (combo_intr_status_combo3_h2l_qs)
);
// R[key_intr_status]: V(False)
// F[pwrb_h2l]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_pwrb_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_pwrb_h2l_we),
.wd (key_intr_status_pwrb_h2l_wd),
// from internal hardware
.de (hw2reg.key_intr_status.pwrb_h2l.de),
.d (hw2reg.key_intr_status.pwrb_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_pwrb_h2l_qs)
);
// F[key0_in_h2l]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_key0_in_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_key0_in_h2l_we),
.wd (key_intr_status_key0_in_h2l_wd),
// from internal hardware
.de (hw2reg.key_intr_status.key0_in_h2l.de),
.d (hw2reg.key_intr_status.key0_in_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_key0_in_h2l_qs)
);
// F[key1_in_h2l]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_key1_in_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_key1_in_h2l_we),
.wd (key_intr_status_key1_in_h2l_wd),
// from internal hardware
.de (hw2reg.key_intr_status.key1_in_h2l.de),
.d (hw2reg.key_intr_status.key1_in_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_key1_in_h2l_qs)
);
// F[key2_in_h2l]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_key2_in_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_key2_in_h2l_we),
.wd (key_intr_status_key2_in_h2l_wd),
// from internal hardware
.de (hw2reg.key_intr_status.key2_in_h2l.de),
.d (hw2reg.key_intr_status.key2_in_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_key2_in_h2l_qs)
);
// F[ac_present_h2l]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_ac_present_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_ac_present_h2l_we),
.wd (key_intr_status_ac_present_h2l_wd),
// from internal hardware
.de (hw2reg.key_intr_status.ac_present_h2l.de),
.d (hw2reg.key_intr_status.ac_present_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_ac_present_h2l_qs)
);
// F[ec_rst_l_h2l]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_ec_rst_l_h2l (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_ec_rst_l_h2l_we),
.wd (key_intr_status_ec_rst_l_h2l_wd),
// from internal hardware
.de (hw2reg.key_intr_status.ec_rst_l_h2l.de),
.d (hw2reg.key_intr_status.ec_rst_l_h2l.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_ec_rst_l_h2l_qs)
);
// F[pwrb_l2h]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_pwrb_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_pwrb_l2h_we),
.wd (key_intr_status_pwrb_l2h_wd),
// from internal hardware
.de (hw2reg.key_intr_status.pwrb_l2h.de),
.d (hw2reg.key_intr_status.pwrb_l2h.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_pwrb_l2h_qs)
);
// F[key0_in_l2h]: 7:7
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_key0_in_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_key0_in_l2h_we),
.wd (key_intr_status_key0_in_l2h_wd),
// from internal hardware
.de (hw2reg.key_intr_status.key0_in_l2h.de),
.d (hw2reg.key_intr_status.key0_in_l2h.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_key0_in_l2h_qs)
);
// F[key1_in_l2h]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_key1_in_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_key1_in_l2h_we),
.wd (key_intr_status_key1_in_l2h_wd),
// from internal hardware
.de (hw2reg.key_intr_status.key1_in_l2h.de),
.d (hw2reg.key_intr_status.key1_in_l2h.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_key1_in_l2h_qs)
);
// F[key2_in_l2h]: 9:9
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_key2_in_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_key2_in_l2h_we),
.wd (key_intr_status_key2_in_l2h_wd),
// from internal hardware
.de (hw2reg.key_intr_status.key2_in_l2h.de),
.d (hw2reg.key_intr_status.key2_in_l2h.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_key2_in_l2h_qs)
);
// F[ac_present_l2h]: 10:10
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_ac_present_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_ac_present_l2h_we),
.wd (key_intr_status_ac_present_l2h_wd),
// from internal hardware
.de (hw2reg.key_intr_status.ac_present_l2h.de),
.d (hw2reg.key_intr_status.ac_present_l2h.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_ac_present_l2h_qs)
);
// F[ec_rst_l_l2h]: 11:11
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_key_intr_status_ec_rst_l_l2h (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key_intr_status_ec_rst_l_l2h_we),
.wd (key_intr_status_ec_rst_l_l2h_wd),
// from internal hardware
.de (hw2reg.key_intr_status.ec_rst_l_l2h.de),
.d (hw2reg.key_intr_status.ec_rst_l_l2h.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (key_intr_status_ec_rst_l_l2h_qs)
);
logic [27:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == RBOX_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == RBOX_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == RBOX_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == RBOX_REGWEN_OFFSET);
addr_hit[ 4] = (reg_addr == RBOX_EC_RST_CTL_OFFSET);
addr_hit[ 5] = (reg_addr == RBOX_KEY_INVERT_CTL_OFFSET);
addr_hit[ 6] = (reg_addr == RBOX_PIN_ALLOWED_CTL_OFFSET);
addr_hit[ 7] = (reg_addr == RBOX_PIN_OUT_CTL_OFFSET);
addr_hit[ 8] = (reg_addr == RBOX_PIN_OUT_VALUE_OFFSET);
addr_hit[ 9] = (reg_addr == RBOX_PIN_IN_VALUE_OFFSET);
addr_hit[10] = (reg_addr == RBOX_KEY_INTR_CTL_OFFSET);
addr_hit[11] = (reg_addr == RBOX_KEY_INTR_DEBOUNCE_CTL_OFFSET);
addr_hit[12] = (reg_addr == RBOX_AUTO_BLOCK_DEBOUNCE_CTL_OFFSET);
addr_hit[13] = (reg_addr == RBOX_AUTO_BLOCK_OUT_CTL_OFFSET);
addr_hit[14] = (reg_addr == RBOX_COM_SEL_CTL_0_OFFSET);
addr_hit[15] = (reg_addr == RBOX_COM_SEL_CTL_1_OFFSET);
addr_hit[16] = (reg_addr == RBOX_COM_SEL_CTL_2_OFFSET);
addr_hit[17] = (reg_addr == RBOX_COM_SEL_CTL_3_OFFSET);
addr_hit[18] = (reg_addr == RBOX_COM_DET_CTL_0_OFFSET);
addr_hit[19] = (reg_addr == RBOX_COM_DET_CTL_1_OFFSET);
addr_hit[20] = (reg_addr == RBOX_COM_DET_CTL_2_OFFSET);
addr_hit[21] = (reg_addr == RBOX_COM_DET_CTL_3_OFFSET);
addr_hit[22] = (reg_addr == RBOX_COM_OUT_CTL_0_OFFSET);
addr_hit[23] = (reg_addr == RBOX_COM_OUT_CTL_1_OFFSET);
addr_hit[24] = (reg_addr == RBOX_COM_OUT_CTL_2_OFFSET);
addr_hit[25] = (reg_addr == RBOX_COM_OUT_CTL_3_OFFSET);
addr_hit[26] = (reg_addr == RBOX_COMBO_INTR_STATUS_OFFSET);
addr_hit[27] = (reg_addr == RBOX_KEY_INTR_STATUS_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (RBOX_PERMIT[ 0] != (RBOX_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (RBOX_PERMIT[ 1] != (RBOX_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (RBOX_PERMIT[ 2] != (RBOX_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (RBOX_PERMIT[ 3] != (RBOX_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (RBOX_PERMIT[ 4] != (RBOX_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (RBOX_PERMIT[ 5] != (RBOX_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (RBOX_PERMIT[ 6] != (RBOX_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (RBOX_PERMIT[ 7] != (RBOX_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (RBOX_PERMIT[ 8] != (RBOX_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (RBOX_PERMIT[ 9] != (RBOX_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (RBOX_PERMIT[10] != (RBOX_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[11] && reg_we && (RBOX_PERMIT[11] != (RBOX_PERMIT[11] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[12] && reg_we && (RBOX_PERMIT[12] != (RBOX_PERMIT[12] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[13] && reg_we && (RBOX_PERMIT[13] != (RBOX_PERMIT[13] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[14] && reg_we && (RBOX_PERMIT[14] != (RBOX_PERMIT[14] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[15] && reg_we && (RBOX_PERMIT[15] != (RBOX_PERMIT[15] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[16] && reg_we && (RBOX_PERMIT[16] != (RBOX_PERMIT[16] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[17] && reg_we && (RBOX_PERMIT[17] != (RBOX_PERMIT[17] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[18] && reg_we && (RBOX_PERMIT[18] != (RBOX_PERMIT[18] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[19] && reg_we && (RBOX_PERMIT[19] != (RBOX_PERMIT[19] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[20] && reg_we && (RBOX_PERMIT[20] != (RBOX_PERMIT[20] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[21] && reg_we && (RBOX_PERMIT[21] != (RBOX_PERMIT[21] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[22] && reg_we && (RBOX_PERMIT[22] != (RBOX_PERMIT[22] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[23] && reg_we && (RBOX_PERMIT[23] != (RBOX_PERMIT[23] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[24] && reg_we && (RBOX_PERMIT[24] != (RBOX_PERMIT[24] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[25] && reg_we && (RBOX_PERMIT[25] != (RBOX_PERMIT[25] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[26] && reg_we && (RBOX_PERMIT[26] != (RBOX_PERMIT[26] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[27] && reg_we && (RBOX_PERMIT[27] != (RBOX_PERMIT[27] & reg_be))) wr_err = 1'b1 ;
end
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_wd = reg_wdata[0];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_wd = reg_wdata[0];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_wd = reg_wdata[0];
assign regwen_we = addr_hit[3] & reg_we & !reg_error;
assign regwen_wd = reg_wdata[0];
assign ec_rst_ctl_we = addr_hit[4] & reg_we & !reg_error;
assign ec_rst_ctl_wd = reg_wdata[15:0];
assign key_invert_ctl_key0_in_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_key0_in_wd = reg_wdata[0];
assign key_invert_ctl_key0_out_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_key0_out_wd = reg_wdata[1];
assign key_invert_ctl_key1_in_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_key1_in_wd = reg_wdata[2];
assign key_invert_ctl_key1_out_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_key1_out_wd = reg_wdata[3];
assign key_invert_ctl_key2_in_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_key2_in_wd = reg_wdata[4];
assign key_invert_ctl_key2_out_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_key2_out_wd = reg_wdata[5];
assign key_invert_ctl_pwrb_in_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_pwrb_in_wd = reg_wdata[6];
assign key_invert_ctl_pwrb_out_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_pwrb_out_wd = reg_wdata[7];
assign key_invert_ctl_ac_present_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_ac_present_wd = reg_wdata[8];
assign key_invert_ctl_bat_disable_we = addr_hit[5] & reg_we & !reg_error;
assign key_invert_ctl_bat_disable_wd = reg_wdata[9];
assign pin_allowed_ctl_bat_disable_0_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_bat_disable_0_wd = reg_wdata[0];
assign pin_allowed_ctl_ec_rst_l_0_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_ec_rst_l_0_wd = reg_wdata[1];
assign pin_allowed_ctl_pwrb_out_0_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_pwrb_out_0_wd = reg_wdata[2];
assign pin_allowed_ctl_key0_out_0_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_key0_out_0_wd = reg_wdata[3];
assign pin_allowed_ctl_key1_out_0_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_key1_out_0_wd = reg_wdata[4];
assign pin_allowed_ctl_key2_out_0_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_key2_out_0_wd = reg_wdata[5];
assign pin_allowed_ctl_bat_disable_1_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_bat_disable_1_wd = reg_wdata[6];
assign pin_allowed_ctl_ec_rst_l_1_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_ec_rst_l_1_wd = reg_wdata[7];
assign pin_allowed_ctl_pwrb_out_1_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_pwrb_out_1_wd = reg_wdata[8];
assign pin_allowed_ctl_key0_out_1_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_key0_out_1_wd = reg_wdata[9];
assign pin_allowed_ctl_key1_out_1_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_key1_out_1_wd = reg_wdata[10];
assign pin_allowed_ctl_key2_out_1_we = addr_hit[6] & reg_we & !reg_error;
assign pin_allowed_ctl_key2_out_1_wd = reg_wdata[11];
assign pin_out_ctl_bat_disable_we = addr_hit[7] & reg_we & !reg_error;
assign pin_out_ctl_bat_disable_wd = reg_wdata[0];
assign pin_out_ctl_ec_rst_l_we = addr_hit[7] & reg_we & !reg_error;
assign pin_out_ctl_ec_rst_l_wd = reg_wdata[1];
assign pin_out_ctl_pwrb_out_we = addr_hit[7] & reg_we & !reg_error;
assign pin_out_ctl_pwrb_out_wd = reg_wdata[2];
assign pin_out_ctl_key0_out_we = addr_hit[7] & reg_we & !reg_error;
assign pin_out_ctl_key0_out_wd = reg_wdata[3];
assign pin_out_ctl_key1_out_we = addr_hit[7] & reg_we & !reg_error;
assign pin_out_ctl_key1_out_wd = reg_wdata[4];
assign pin_out_ctl_key2_out_we = addr_hit[7] & reg_we & !reg_error;
assign pin_out_ctl_key2_out_wd = reg_wdata[5];
assign pin_out_value_bat_disable_we = addr_hit[8] & reg_we & !reg_error;
assign pin_out_value_bat_disable_wd = reg_wdata[0];
assign pin_out_value_ec_rst_l_we = addr_hit[8] & reg_we & !reg_error;
assign pin_out_value_ec_rst_l_wd = reg_wdata[1];
assign pin_out_value_pwrb_out_we = addr_hit[8] & reg_we & !reg_error;
assign pin_out_value_pwrb_out_wd = reg_wdata[2];
assign pin_out_value_key0_out_we = addr_hit[8] & reg_we & !reg_error;
assign pin_out_value_key0_out_wd = reg_wdata[3];
assign pin_out_value_key1_out_we = addr_hit[8] & reg_we & !reg_error;
assign pin_out_value_key1_out_wd = reg_wdata[4];
assign pin_out_value_key2_out_we = addr_hit[8] & reg_we & !reg_error;
assign pin_out_value_key2_out_wd = reg_wdata[5];
assign key_intr_ctl_pwrb_in_h2l_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_pwrb_in_h2l_wd = reg_wdata[0];
assign key_intr_ctl_key0_in_h2l_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_key0_in_h2l_wd = reg_wdata[1];
assign key_intr_ctl_key1_in_h2l_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_key1_in_h2l_wd = reg_wdata[2];
assign key_intr_ctl_key2_in_h2l_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_key2_in_h2l_wd = reg_wdata[3];
assign key_intr_ctl_ac_present_h2l_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_ac_present_h2l_wd = reg_wdata[4];
assign key_intr_ctl_ec_rst_l_h2l_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_ec_rst_l_h2l_wd = reg_wdata[5];
assign key_intr_ctl_pwrb_in_l2h_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_pwrb_in_l2h_wd = reg_wdata[8];
assign key_intr_ctl_key0_in_l2h_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_key0_in_l2h_wd = reg_wdata[9];
assign key_intr_ctl_key1_in_l2h_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_key1_in_l2h_wd = reg_wdata[10];
assign key_intr_ctl_key2_in_l2h_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_key2_in_l2h_wd = reg_wdata[11];
assign key_intr_ctl_ac_present_l2h_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_ac_present_l2h_wd = reg_wdata[12];
assign key_intr_ctl_ec_rst_l_l2h_we = addr_hit[10] & reg_we & !reg_error;
assign key_intr_ctl_ec_rst_l_l2h_wd = reg_wdata[13];
assign key_intr_debounce_ctl_we = addr_hit[11] & reg_we & !reg_error;
assign key_intr_debounce_ctl_wd = reg_wdata[15:0];
assign auto_block_debounce_ctl_debounce_timer_we = addr_hit[12] & reg_we & !reg_error;
assign auto_block_debounce_ctl_debounce_timer_wd = reg_wdata[15:0];
assign auto_block_debounce_ctl_auto_block_enable_we = addr_hit[12] & reg_we & !reg_error;
assign auto_block_debounce_ctl_auto_block_enable_wd = reg_wdata[16];
assign auto_block_out_ctl_key0_out_sel_we = addr_hit[13] & reg_we & !reg_error;
assign auto_block_out_ctl_key0_out_sel_wd = reg_wdata[0];
assign auto_block_out_ctl_key1_out_sel_we = addr_hit[13] & reg_we & !reg_error;
assign auto_block_out_ctl_key1_out_sel_wd = reg_wdata[1];
assign auto_block_out_ctl_key2_out_sel_we = addr_hit[13] & reg_we & !reg_error;
assign auto_block_out_ctl_key2_out_sel_wd = reg_wdata[2];
assign auto_block_out_ctl_key0_out_value_we = addr_hit[13] & reg_we & !reg_error;
assign auto_block_out_ctl_key0_out_value_wd = reg_wdata[4];
assign auto_block_out_ctl_key1_out_value_we = addr_hit[13] & reg_we & !reg_error;
assign auto_block_out_ctl_key1_out_value_wd = reg_wdata[5];
assign auto_block_out_ctl_key2_out_value_we = addr_hit[13] & reg_we & !reg_error;
assign auto_block_out_ctl_key2_out_value_wd = reg_wdata[6];
assign com_sel_ctl_0_key0_in_sel_0_we = addr_hit[14] & reg_we & !reg_error;
assign com_sel_ctl_0_key0_in_sel_0_wd = reg_wdata[0];
assign com_sel_ctl_0_key1_in_sel_0_we = addr_hit[14] & reg_we & !reg_error;
assign com_sel_ctl_0_key1_in_sel_0_wd = reg_wdata[1];
assign com_sel_ctl_0_key2_in_sel_0_we = addr_hit[14] & reg_we & !reg_error;
assign com_sel_ctl_0_key2_in_sel_0_wd = reg_wdata[2];
assign com_sel_ctl_0_pwrb_in_sel_0_we = addr_hit[14] & reg_we & !reg_error;
assign com_sel_ctl_0_pwrb_in_sel_0_wd = reg_wdata[3];
assign com_sel_ctl_0_ac_present_sel_0_we = addr_hit[14] & reg_we & !reg_error;
assign com_sel_ctl_0_ac_present_sel_0_wd = reg_wdata[4];
assign com_sel_ctl_1_key0_in_sel_1_we = addr_hit[15] & reg_we & !reg_error;
assign com_sel_ctl_1_key0_in_sel_1_wd = reg_wdata[0];
assign com_sel_ctl_1_key1_in_sel_1_we = addr_hit[15] & reg_we & !reg_error;
assign com_sel_ctl_1_key1_in_sel_1_wd = reg_wdata[1];
assign com_sel_ctl_1_key2_in_sel_1_we = addr_hit[15] & reg_we & !reg_error;
assign com_sel_ctl_1_key2_in_sel_1_wd = reg_wdata[2];
assign com_sel_ctl_1_pwrb_in_sel_1_we = addr_hit[15] & reg_we & !reg_error;
assign com_sel_ctl_1_pwrb_in_sel_1_wd = reg_wdata[3];
assign com_sel_ctl_1_ac_present_sel_1_we = addr_hit[15] & reg_we & !reg_error;
assign com_sel_ctl_1_ac_present_sel_1_wd = reg_wdata[4];
assign com_sel_ctl_2_key0_in_sel_2_we = addr_hit[16] & reg_we & !reg_error;
assign com_sel_ctl_2_key0_in_sel_2_wd = reg_wdata[0];
assign com_sel_ctl_2_key1_in_sel_2_we = addr_hit[16] & reg_we & !reg_error;
assign com_sel_ctl_2_key1_in_sel_2_wd = reg_wdata[1];
assign com_sel_ctl_2_key2_in_sel_2_we = addr_hit[16] & reg_we & !reg_error;
assign com_sel_ctl_2_key2_in_sel_2_wd = reg_wdata[2];
assign com_sel_ctl_2_pwrb_in_sel_2_we = addr_hit[16] & reg_we & !reg_error;
assign com_sel_ctl_2_pwrb_in_sel_2_wd = reg_wdata[3];
assign com_sel_ctl_2_ac_present_sel_2_we = addr_hit[16] & reg_we & !reg_error;
assign com_sel_ctl_2_ac_present_sel_2_wd = reg_wdata[4];
assign com_sel_ctl_3_key0_in_sel_3_we = addr_hit[17] & reg_we & !reg_error;
assign com_sel_ctl_3_key0_in_sel_3_wd = reg_wdata[0];
assign com_sel_ctl_3_key1_in_sel_3_we = addr_hit[17] & reg_we & !reg_error;
assign com_sel_ctl_3_key1_in_sel_3_wd = reg_wdata[1];
assign com_sel_ctl_3_key2_in_sel_3_we = addr_hit[17] & reg_we & !reg_error;
assign com_sel_ctl_3_key2_in_sel_3_wd = reg_wdata[2];
assign com_sel_ctl_3_pwrb_in_sel_3_we = addr_hit[17] & reg_we & !reg_error;
assign com_sel_ctl_3_pwrb_in_sel_3_wd = reg_wdata[3];
assign com_sel_ctl_3_ac_present_sel_3_we = addr_hit[17] & reg_we & !reg_error;
assign com_sel_ctl_3_ac_present_sel_3_wd = reg_wdata[4];
assign com_det_ctl_0_we = addr_hit[18] & reg_we & !reg_error;
assign com_det_ctl_0_wd = reg_wdata[31:0];
assign com_det_ctl_1_we = addr_hit[19] & reg_we & !reg_error;
assign com_det_ctl_1_wd = reg_wdata[31:0];
assign com_det_ctl_2_we = addr_hit[20] & reg_we & !reg_error;
assign com_det_ctl_2_wd = reg_wdata[31:0];
assign com_det_ctl_3_we = addr_hit[21] & reg_we & !reg_error;
assign com_det_ctl_3_wd = reg_wdata[31:0];
assign com_out_ctl_0_bat_disable_0_we = addr_hit[22] & reg_we & !reg_error;
assign com_out_ctl_0_bat_disable_0_wd = reg_wdata[0];
assign com_out_ctl_0_interrupt_0_we = addr_hit[22] & reg_we & !reg_error;
assign com_out_ctl_0_interrupt_0_wd = reg_wdata[1];
assign com_out_ctl_0_ec_rst_0_we = addr_hit[22] & reg_we & !reg_error;
assign com_out_ctl_0_ec_rst_0_wd = reg_wdata[2];
assign com_out_ctl_0_gsc_rst_0_we = addr_hit[22] & reg_we & !reg_error;
assign com_out_ctl_0_gsc_rst_0_wd = reg_wdata[3];
assign com_out_ctl_1_bat_disable_1_we = addr_hit[23] & reg_we & !reg_error;
assign com_out_ctl_1_bat_disable_1_wd = reg_wdata[0];
assign com_out_ctl_1_interrupt_1_we = addr_hit[23] & reg_we & !reg_error;
assign com_out_ctl_1_interrupt_1_wd = reg_wdata[1];
assign com_out_ctl_1_ec_rst_1_we = addr_hit[23] & reg_we & !reg_error;
assign com_out_ctl_1_ec_rst_1_wd = reg_wdata[2];
assign com_out_ctl_1_gsc_rst_1_we = addr_hit[23] & reg_we & !reg_error;
assign com_out_ctl_1_gsc_rst_1_wd = reg_wdata[3];
assign com_out_ctl_2_bat_disable_2_we = addr_hit[24] & reg_we & !reg_error;
assign com_out_ctl_2_bat_disable_2_wd = reg_wdata[0];
assign com_out_ctl_2_interrupt_2_we = addr_hit[24] & reg_we & !reg_error;
assign com_out_ctl_2_interrupt_2_wd = reg_wdata[1];
assign com_out_ctl_2_ec_rst_2_we = addr_hit[24] & reg_we & !reg_error;
assign com_out_ctl_2_ec_rst_2_wd = reg_wdata[2];
assign com_out_ctl_2_gsc_rst_2_we = addr_hit[24] & reg_we & !reg_error;
assign com_out_ctl_2_gsc_rst_2_wd = reg_wdata[3];
assign com_out_ctl_3_bat_disable_3_we = addr_hit[25] & reg_we & !reg_error;
assign com_out_ctl_3_bat_disable_3_wd = reg_wdata[0];
assign com_out_ctl_3_interrupt_3_we = addr_hit[25] & reg_we & !reg_error;
assign com_out_ctl_3_interrupt_3_wd = reg_wdata[1];
assign com_out_ctl_3_ec_rst_3_we = addr_hit[25] & reg_we & !reg_error;
assign com_out_ctl_3_ec_rst_3_wd = reg_wdata[2];
assign com_out_ctl_3_gsc_rst_3_we = addr_hit[25] & reg_we & !reg_error;
assign com_out_ctl_3_gsc_rst_3_wd = reg_wdata[3];
assign combo_intr_status_combo0_h2l_we = addr_hit[26] & reg_we & !reg_error;
assign combo_intr_status_combo0_h2l_wd = reg_wdata[0];
assign combo_intr_status_combo1_h2l_we = addr_hit[26] & reg_we & !reg_error;
assign combo_intr_status_combo1_h2l_wd = reg_wdata[1];
assign combo_intr_status_combo2_h2l_we = addr_hit[26] & reg_we & !reg_error;
assign combo_intr_status_combo2_h2l_wd = reg_wdata[2];
assign combo_intr_status_combo3_h2l_we = addr_hit[26] & reg_we & !reg_error;
assign combo_intr_status_combo3_h2l_wd = reg_wdata[3];
assign key_intr_status_pwrb_h2l_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_pwrb_h2l_wd = reg_wdata[0];
assign key_intr_status_key0_in_h2l_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_key0_in_h2l_wd = reg_wdata[1];
assign key_intr_status_key1_in_h2l_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_key1_in_h2l_wd = reg_wdata[2];
assign key_intr_status_key2_in_h2l_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_key2_in_h2l_wd = reg_wdata[3];
assign key_intr_status_ac_present_h2l_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_ac_present_h2l_wd = reg_wdata[4];
assign key_intr_status_ec_rst_l_h2l_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_ec_rst_l_h2l_wd = reg_wdata[5];
assign key_intr_status_pwrb_l2h_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_pwrb_l2h_wd = reg_wdata[6];
assign key_intr_status_key0_in_l2h_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_key0_in_l2h_wd = reg_wdata[7];
assign key_intr_status_key1_in_l2h_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_key1_in_l2h_wd = reg_wdata[8];
assign key_intr_status_key2_in_l2h_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_key2_in_l2h_wd = reg_wdata[9];
assign key_intr_status_ac_present_l2h_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_ac_present_l2h_wd = reg_wdata[10];
assign key_intr_status_ec_rst_l_l2h_we = addr_hit[27] & reg_we & !reg_error;
assign key_intr_status_ec_rst_l_l2h_wd = reg_wdata[11];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = regwen_qs;
end
addr_hit[4]: begin
reg_rdata_next[15:0] = ec_rst_ctl_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = key_invert_ctl_key0_in_qs;
reg_rdata_next[1] = key_invert_ctl_key0_out_qs;
reg_rdata_next[2] = key_invert_ctl_key1_in_qs;
reg_rdata_next[3] = key_invert_ctl_key1_out_qs;
reg_rdata_next[4] = key_invert_ctl_key2_in_qs;
reg_rdata_next[5] = key_invert_ctl_key2_out_qs;
reg_rdata_next[6] = key_invert_ctl_pwrb_in_qs;
reg_rdata_next[7] = key_invert_ctl_pwrb_out_qs;
reg_rdata_next[8] = key_invert_ctl_ac_present_qs;
reg_rdata_next[9] = key_invert_ctl_bat_disable_qs;
end
addr_hit[6]: begin
reg_rdata_next[0] = pin_allowed_ctl_bat_disable_0_qs;
reg_rdata_next[1] = pin_allowed_ctl_ec_rst_l_0_qs;
reg_rdata_next[2] = pin_allowed_ctl_pwrb_out_0_qs;
reg_rdata_next[3] = pin_allowed_ctl_key0_out_0_qs;
reg_rdata_next[4] = pin_allowed_ctl_key1_out_0_qs;
reg_rdata_next[5] = pin_allowed_ctl_key2_out_0_qs;
reg_rdata_next[6] = pin_allowed_ctl_bat_disable_1_qs;
reg_rdata_next[7] = pin_allowed_ctl_ec_rst_l_1_qs;
reg_rdata_next[8] = pin_allowed_ctl_pwrb_out_1_qs;
reg_rdata_next[9] = pin_allowed_ctl_key0_out_1_qs;
reg_rdata_next[10] = pin_allowed_ctl_key1_out_1_qs;
reg_rdata_next[11] = pin_allowed_ctl_key2_out_1_qs;
end
addr_hit[7]: begin
reg_rdata_next[0] = pin_out_ctl_bat_disable_qs;
reg_rdata_next[1] = pin_out_ctl_ec_rst_l_qs;
reg_rdata_next[2] = pin_out_ctl_pwrb_out_qs;
reg_rdata_next[3] = pin_out_ctl_key0_out_qs;
reg_rdata_next[4] = pin_out_ctl_key1_out_qs;
reg_rdata_next[5] = pin_out_ctl_key2_out_qs;
end
addr_hit[8]: begin
reg_rdata_next[0] = pin_out_value_bat_disable_qs;
reg_rdata_next[1] = pin_out_value_ec_rst_l_qs;
reg_rdata_next[2] = pin_out_value_pwrb_out_qs;
reg_rdata_next[3] = pin_out_value_key0_out_qs;
reg_rdata_next[4] = pin_out_value_key1_out_qs;
reg_rdata_next[5] = pin_out_value_key2_out_qs;
end
addr_hit[9]: begin
reg_rdata_next[0] = pin_in_value_ac_present_qs;
reg_rdata_next[1] = pin_in_value_ec_rst_l_qs;
reg_rdata_next[2] = pin_in_value_pwrb_in_qs;
reg_rdata_next[3] = pin_in_value_key0_in_qs;
reg_rdata_next[4] = pin_in_value_key1_in_qs;
reg_rdata_next[5] = pin_in_value_key2_in_qs;
end
addr_hit[10]: begin
reg_rdata_next[0] = key_intr_ctl_pwrb_in_h2l_qs;
reg_rdata_next[1] = key_intr_ctl_key0_in_h2l_qs;
reg_rdata_next[2] = key_intr_ctl_key1_in_h2l_qs;
reg_rdata_next[3] = key_intr_ctl_key2_in_h2l_qs;
reg_rdata_next[4] = key_intr_ctl_ac_present_h2l_qs;
reg_rdata_next[5] = key_intr_ctl_ec_rst_l_h2l_qs;
reg_rdata_next[8] = key_intr_ctl_pwrb_in_l2h_qs;
reg_rdata_next[9] = key_intr_ctl_key0_in_l2h_qs;
reg_rdata_next[10] = key_intr_ctl_key1_in_l2h_qs;
reg_rdata_next[11] = key_intr_ctl_key2_in_l2h_qs;
reg_rdata_next[12] = key_intr_ctl_ac_present_l2h_qs;
reg_rdata_next[13] = key_intr_ctl_ec_rst_l_l2h_qs;
end
addr_hit[11]: begin
reg_rdata_next[15:0] = key_intr_debounce_ctl_qs;
end
addr_hit[12]: begin
reg_rdata_next[15:0] = auto_block_debounce_ctl_debounce_timer_qs;
reg_rdata_next[16] = auto_block_debounce_ctl_auto_block_enable_qs;
end
addr_hit[13]: begin
reg_rdata_next[0] = auto_block_out_ctl_key0_out_sel_qs;
reg_rdata_next[1] = auto_block_out_ctl_key1_out_sel_qs;
reg_rdata_next[2] = auto_block_out_ctl_key2_out_sel_qs;
reg_rdata_next[4] = auto_block_out_ctl_key0_out_value_qs;
reg_rdata_next[5] = auto_block_out_ctl_key1_out_value_qs;
reg_rdata_next[6] = auto_block_out_ctl_key2_out_value_qs;
end
addr_hit[14]: begin
reg_rdata_next[0] = com_sel_ctl_0_key0_in_sel_0_qs;
reg_rdata_next[1] = com_sel_ctl_0_key1_in_sel_0_qs;
reg_rdata_next[2] = com_sel_ctl_0_key2_in_sel_0_qs;
reg_rdata_next[3] = com_sel_ctl_0_pwrb_in_sel_0_qs;
reg_rdata_next[4] = com_sel_ctl_0_ac_present_sel_0_qs;
end
addr_hit[15]: begin
reg_rdata_next[0] = com_sel_ctl_1_key0_in_sel_1_qs;
reg_rdata_next[1] = com_sel_ctl_1_key1_in_sel_1_qs;
reg_rdata_next[2] = com_sel_ctl_1_key2_in_sel_1_qs;
reg_rdata_next[3] = com_sel_ctl_1_pwrb_in_sel_1_qs;
reg_rdata_next[4] = com_sel_ctl_1_ac_present_sel_1_qs;
end
addr_hit[16]: begin
reg_rdata_next[0] = com_sel_ctl_2_key0_in_sel_2_qs;
reg_rdata_next[1] = com_sel_ctl_2_key1_in_sel_2_qs;
reg_rdata_next[2] = com_sel_ctl_2_key2_in_sel_2_qs;
reg_rdata_next[3] = com_sel_ctl_2_pwrb_in_sel_2_qs;
reg_rdata_next[4] = com_sel_ctl_2_ac_present_sel_2_qs;
end
addr_hit[17]: begin
reg_rdata_next[0] = com_sel_ctl_3_key0_in_sel_3_qs;
reg_rdata_next[1] = com_sel_ctl_3_key1_in_sel_3_qs;
reg_rdata_next[2] = com_sel_ctl_3_key2_in_sel_3_qs;
reg_rdata_next[3] = com_sel_ctl_3_pwrb_in_sel_3_qs;
reg_rdata_next[4] = com_sel_ctl_3_ac_present_sel_3_qs;
end
addr_hit[18]: begin
reg_rdata_next[31:0] = com_det_ctl_0_qs;
end
addr_hit[19]: begin
reg_rdata_next[31:0] = com_det_ctl_1_qs;
end
addr_hit[20]: begin
reg_rdata_next[31:0] = com_det_ctl_2_qs;
end
addr_hit[21]: begin
reg_rdata_next[31:0] = com_det_ctl_3_qs;
end
addr_hit[22]: begin
reg_rdata_next[0] = com_out_ctl_0_bat_disable_0_qs;
reg_rdata_next[1] = com_out_ctl_0_interrupt_0_qs;
reg_rdata_next[2] = com_out_ctl_0_ec_rst_0_qs;
reg_rdata_next[3] = com_out_ctl_0_gsc_rst_0_qs;
end
addr_hit[23]: begin
reg_rdata_next[0] = com_out_ctl_1_bat_disable_1_qs;
reg_rdata_next[1] = com_out_ctl_1_interrupt_1_qs;
reg_rdata_next[2] = com_out_ctl_1_ec_rst_1_qs;
reg_rdata_next[3] = com_out_ctl_1_gsc_rst_1_qs;
end
addr_hit[24]: begin
reg_rdata_next[0] = com_out_ctl_2_bat_disable_2_qs;
reg_rdata_next[1] = com_out_ctl_2_interrupt_2_qs;
reg_rdata_next[2] = com_out_ctl_2_ec_rst_2_qs;
reg_rdata_next[3] = com_out_ctl_2_gsc_rst_2_qs;
end
addr_hit[25]: begin
reg_rdata_next[0] = com_out_ctl_3_bat_disable_3_qs;
reg_rdata_next[1] = com_out_ctl_3_interrupt_3_qs;
reg_rdata_next[2] = com_out_ctl_3_ec_rst_3_qs;
reg_rdata_next[3] = com_out_ctl_3_gsc_rst_3_qs;
end
addr_hit[26]: begin
reg_rdata_next[0] = combo_intr_status_combo0_h2l_qs;
reg_rdata_next[1] = combo_intr_status_combo1_h2l_qs;
reg_rdata_next[2] = combo_intr_status_combo2_h2l_qs;
reg_rdata_next[3] = combo_intr_status_combo3_h2l_qs;
end
addr_hit[27]: begin
reg_rdata_next[0] = key_intr_status_pwrb_h2l_qs;
reg_rdata_next[1] = key_intr_status_key0_in_h2l_qs;
reg_rdata_next[2] = key_intr_status_key1_in_h2l_qs;
reg_rdata_next[3] = key_intr_status_key2_in_h2l_qs;
reg_rdata_next[4] = key_intr_status_ac_present_h2l_qs;
reg_rdata_next[5] = key_intr_status_ec_rst_l_h2l_qs;
reg_rdata_next[6] = key_intr_status_pwrb_l2h_qs;
reg_rdata_next[7] = key_intr_status_key0_in_l2h_qs;
reg_rdata_next[8] = key_intr_status_key1_in_l2h_qs;
reg_rdata_next[9] = key_intr_status_key2_in_l2h_qs;
reg_rdata_next[10] = key_intr_status_ac_present_l2h_qs;
reg_rdata_next[11] = key_intr_status_ec_rst_l_l2h_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule