|  | // Copyright 2016 Google Inc. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  | #include <errno.h> | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "cryptoc/p256.h" | 
|  |  | 
|  | #define _TOSTR(x) #x | 
|  | #define TOSTR(x) _TOSTR(x) | 
|  | #define CHECK(x) \ | 
|  | do { if (!(x)) { \ | 
|  | errno = EADV; \ | 
|  | perror(#x " @ line " TOSTR(__LINE__)); exit(1); }} while(0) | 
|  |  | 
|  | static int count_bits(const p256_int* a) { | 
|  | int i, n = 0; | 
|  | for (i = 0; i < 256; ++i) { | 
|  | n += p256_get_bit(a, i); | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | // Confirm the CPU's right shift is an arithmetic shift | 
|  | void test_cpu_behavior() { | 
|  | int32_t i; | 
|  | volatile int32_t val = -1; | 
|  | uint32_t one = 1; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | CHECK((val>>i) == (-1)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | CHECK(0 != (((uint32_t)(val>>i)) & (one<<i))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_shifts() { | 
|  | p256_int a = {{1}}; | 
|  | p256_int b; | 
|  | int i; | 
|  |  | 
|  | // First shift bit up one step at a time. | 
|  | for (i = 0; i < 255; ++i) { | 
|  | CHECK(p256_get_bit(&a, i) == 1); | 
|  | CHECK(!p256_is_zero(&a)); | 
|  | CHECK(p256_shl(&a, 1, &a) == 0); | 
|  | CHECK(p256_get_bit(&a, i) == 0); | 
|  | CHECK(count_bits(&a) == 1); | 
|  | } | 
|  | CHECK(p256_get_bit(&a, i) == 1); | 
|  | CHECK(!p256_is_zero(&a)); | 
|  |  | 
|  | // Shift bit out top. | 
|  | CHECK(p256_shl(&a, 1, &b) == 1); | 
|  | CHECK(p256_get_bit(&b, i) == 0); | 
|  | CHECK(p256_is_zero(&b)); | 
|  |  | 
|  | // Shift bit back down. | 
|  | for (; i > 0; --i) { | 
|  | CHECK(p256_get_bit(&a, i) == 1); | 
|  | CHECK(!p256_is_zero(&a)); | 
|  | p256_shr(&a, 1, &a); | 
|  | CHECK(p256_get_bit(&a, i) == 0); | 
|  | CHECK(count_bits(&a) == 1); | 
|  | } | 
|  |  | 
|  | CHECK(p256_get_bit(&a, i) == 1); | 
|  | CHECK(!p256_is_zero(&a)); | 
|  |  | 
|  | // Shift bit out bottom. | 
|  | p256_shr(&a, 1, &a); | 
|  | CHECK(p256_is_zero(&a)); | 
|  | } | 
|  |  | 
|  | void test_add_sub_cmp() { | 
|  | p256_int a = {{1}}; | 
|  | p256_int b; | 
|  | p256_int one = {{1}}; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 255; ++i) { | 
|  | CHECK(count_bits(&a) == 1); | 
|  | CHECK(p256_sub(&a, &one, &b) == 0); | 
|  | CHECK(p256_cmp(&a, &b) == 1); | 
|  | CHECK(p256_cmp(&b, &a) == -1); | 
|  | CHECK(count_bits(&b) == i); | 
|  | CHECK(p256_add(&b, &one, &b) == 0); | 
|  | CHECK(count_bits(&b) == 1); | 
|  | CHECK(p256_cmp(&b, &a) == 0); | 
|  |  | 
|  | CHECK(p256_shl(&a, 1, &a) == 0); | 
|  | } | 
|  |  | 
|  | CHECK(p256_add(&a, &a, &b) == 1);  // expect carry | 
|  | CHECK(p256_is_zero(&b)); | 
|  | CHECK(p256_cmp(&b, &a) == -1); | 
|  | CHECK(p256_sub(&b, &one, &b) == -1);  // expect borrow | 
|  | CHECK(p256_cmp(&b, &a) == 1); | 
|  | } | 
|  |  | 
|  | void test_mul_inv() { | 
|  | p256_int a = {{1}}; | 
|  | p256_int one = {{1}}; | 
|  | p256_int b, c; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 255; ++i) { | 
|  | p256_modinv(&SECP256r1_n, &a, &b);  // b = 1/a | 
|  | p256_modmul(&SECP256r1_n, &a, 0, &b, &c);  // c = b * a = 1/a * a = 1 | 
|  | CHECK(p256_cmp(&c, &one) == 0); | 
|  |  | 
|  | p256_modinv_vartime(&SECP256r1_n, &b, &c);  // c = 1/b = 1/1/a = a | 
|  | CHECK(p256_cmp(&a, &c) == 0); | 
|  |  | 
|  | CHECK(p256_shl(&a, 1, &a) == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_valid_point() { | 
|  | // Constructed x where p < x^3-3x+b < 2^256, unreduced. | 
|  | // Computed matching y to make valid point. | 
|  | p256_int x = {{0x3de86868, 0x1c4c6c08, 0x22d79c, 0, 0, 0, 0, 0}}; | 
|  | p256_int y = {{0xf7cc27ae, 0x29181e9d, 0xcb78ccd6, 0x43800616, | 
|  | 0x86508edc, 0x13f5f534, 0x138ffcd1, 0x6b1c4fae}}; | 
|  |  | 
|  | CHECK(p256_is_valid_point(&x, &y) == 1); | 
|  | } | 
|  |  | 
|  | int main(int argc, char* argv[]) { | 
|  | test_cpu_behavior(); | 
|  | test_shifts(); | 
|  | test_add_sub_cmp(); | 
|  | test_mul_inv(); | 
|  | test_valid_point(); | 
|  | return 0; | 
|  | } |