blob: 033f8751f43d959d6a3d41c5abd5faf90a022eda [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module gpio_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output gpio_reg_pkg::gpio_reg2hw_t reg2hw, // Write
input gpio_reg_pkg::gpio_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import gpio_reg_pkg::* ;
localparam int AW = 6;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [15:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(16)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_we;
logic [31:0] intr_state_qs;
logic [31:0] intr_state_wd;
logic intr_enable_we;
logic [31:0] intr_enable_qs;
logic [31:0] intr_enable_wd;
logic intr_test_we;
logic [31:0] intr_test_wd;
logic alert_test_we;
logic alert_test_wd;
logic [31:0] data_in_qs;
logic direct_out_re;
logic direct_out_we;
logic [31:0] direct_out_qs;
logic [31:0] direct_out_wd;
logic masked_out_lower_re;
logic masked_out_lower_we;
logic [15:0] masked_out_lower_data_qs;
logic [15:0] masked_out_lower_data_wd;
logic [15:0] masked_out_lower_mask_wd;
logic masked_out_upper_re;
logic masked_out_upper_we;
logic [15:0] masked_out_upper_data_qs;
logic [15:0] masked_out_upper_data_wd;
logic [15:0] masked_out_upper_mask_wd;
logic direct_oe_re;
logic direct_oe_we;
logic [31:0] direct_oe_qs;
logic [31:0] direct_oe_wd;
logic masked_oe_lower_re;
logic masked_oe_lower_we;
logic [15:0] masked_oe_lower_data_qs;
logic [15:0] masked_oe_lower_data_wd;
logic [15:0] masked_oe_lower_mask_qs;
logic [15:0] masked_oe_lower_mask_wd;
logic masked_oe_upper_re;
logic masked_oe_upper_we;
logic [15:0] masked_oe_upper_data_qs;
logic [15:0] masked_oe_upper_data_wd;
logic [15:0] masked_oe_upper_mask_qs;
logic [15:0] masked_oe_upper_mask_wd;
logic intr_ctrl_en_rising_we;
logic [31:0] intr_ctrl_en_rising_qs;
logic [31:0] intr_ctrl_en_rising_wd;
logic intr_ctrl_en_falling_we;
logic [31:0] intr_ctrl_en_falling_qs;
logic [31:0] intr_ctrl_en_falling_wd;
logic intr_ctrl_en_lvlhigh_we;
logic [31:0] intr_ctrl_en_lvlhigh_qs;
logic [31:0] intr_ctrl_en_lvlhigh_wd;
logic intr_ctrl_en_lvllow_we;
logic [31:0] intr_ctrl_en_lvllow_qs;
logic [31:0] intr_ctrl_en_lvllow_wd;
logic ctrl_en_input_filter_we;
logic [31:0] ctrl_en_input_filter_qs;
logic [31:0] ctrl_en_input_filter_wd;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (32'h0)
) u_intr_state (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q),
.ds (),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_intr_enable (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q),
.ds (),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
logic intr_test_qe;
logic [0:0] intr_test_flds_we;
assign intr_test_qe = &intr_test_flds_we;
prim_subreg_ext #(
.DW (32)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[0]),
.q (reg2hw.intr_test.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.qe = intr_test_qe;
// R[alert_test]: V(True)
logic alert_test_qe;
logic [0:0] alert_test_flds_we;
assign alert_test_qe = &alert_test_flds_we;
prim_subreg_ext #(
.DW (1)
) u_alert_test (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[0]),
.q (reg2hw.alert_test.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.qe = alert_test_qe;
// R[data_in]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (32'h0)
) u_data_in (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.data_in.de),
.d (hw2reg.data_in.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (data_in_qs)
);
// R[direct_out]: V(True)
logic direct_out_qe;
logic [0:0] direct_out_flds_we;
assign direct_out_qe = &direct_out_flds_we;
prim_subreg_ext #(
.DW (32)
) u_direct_out (
.re (direct_out_re),
.we (direct_out_we),
.wd (direct_out_wd),
.d (hw2reg.direct_out.d),
.qre (),
.qe (direct_out_flds_we[0]),
.q (reg2hw.direct_out.q),
.ds (),
.qs (direct_out_qs)
);
assign reg2hw.direct_out.qe = direct_out_qe;
// R[masked_out_lower]: V(True)
logic masked_out_lower_qe;
logic [1:0] masked_out_lower_flds_we;
assign masked_out_lower_qe = &masked_out_lower_flds_we;
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_out_lower_data (
.re (masked_out_lower_re),
.we (masked_out_lower_we),
.wd (masked_out_lower_data_wd),
.d (hw2reg.masked_out_lower.data.d),
.qre (),
.qe (masked_out_lower_flds_we[0]),
.q (reg2hw.masked_out_lower.data.q),
.ds (),
.qs (masked_out_lower_data_qs)
);
assign reg2hw.masked_out_lower.data.qe = masked_out_lower_qe;
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_out_lower_mask (
.re (1'b0),
.we (masked_out_lower_we),
.wd (masked_out_lower_mask_wd),
.d (hw2reg.masked_out_lower.mask.d),
.qre (),
.qe (masked_out_lower_flds_we[1]),
.q (reg2hw.masked_out_lower.mask.q),
.ds (),
.qs ()
);
assign reg2hw.masked_out_lower.mask.qe = masked_out_lower_qe;
// R[masked_out_upper]: V(True)
logic masked_out_upper_qe;
logic [1:0] masked_out_upper_flds_we;
assign masked_out_upper_qe = &masked_out_upper_flds_we;
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_out_upper_data (
.re (masked_out_upper_re),
.we (masked_out_upper_we),
.wd (masked_out_upper_data_wd),
.d (hw2reg.masked_out_upper.data.d),
.qre (),
.qe (masked_out_upper_flds_we[0]),
.q (reg2hw.masked_out_upper.data.q),
.ds (),
.qs (masked_out_upper_data_qs)
);
assign reg2hw.masked_out_upper.data.qe = masked_out_upper_qe;
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_out_upper_mask (
.re (1'b0),
.we (masked_out_upper_we),
.wd (masked_out_upper_mask_wd),
.d (hw2reg.masked_out_upper.mask.d),
.qre (),
.qe (masked_out_upper_flds_we[1]),
.q (reg2hw.masked_out_upper.mask.q),
.ds (),
.qs ()
);
assign reg2hw.masked_out_upper.mask.qe = masked_out_upper_qe;
// R[direct_oe]: V(True)
logic direct_oe_qe;
logic [0:0] direct_oe_flds_we;
assign direct_oe_qe = &direct_oe_flds_we;
prim_subreg_ext #(
.DW (32)
) u_direct_oe (
.re (direct_oe_re),
.we (direct_oe_we),
.wd (direct_oe_wd),
.d (hw2reg.direct_oe.d),
.qre (),
.qe (direct_oe_flds_we[0]),
.q (reg2hw.direct_oe.q),
.ds (),
.qs (direct_oe_qs)
);
assign reg2hw.direct_oe.qe = direct_oe_qe;
// R[masked_oe_lower]: V(True)
logic masked_oe_lower_qe;
logic [1:0] masked_oe_lower_flds_we;
assign masked_oe_lower_qe = &masked_oe_lower_flds_we;
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_oe_lower_data (
.re (masked_oe_lower_re),
.we (masked_oe_lower_we),
.wd (masked_oe_lower_data_wd),
.d (hw2reg.masked_oe_lower.data.d),
.qre (),
.qe (masked_oe_lower_flds_we[0]),
.q (reg2hw.masked_oe_lower.data.q),
.ds (),
.qs (masked_oe_lower_data_qs)
);
assign reg2hw.masked_oe_lower.data.qe = masked_oe_lower_qe;
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_oe_lower_mask (
.re (masked_oe_lower_re),
.we (masked_oe_lower_we),
.wd (masked_oe_lower_mask_wd),
.d (hw2reg.masked_oe_lower.mask.d),
.qre (),
.qe (masked_oe_lower_flds_we[1]),
.q (reg2hw.masked_oe_lower.mask.q),
.ds (),
.qs (masked_oe_lower_mask_qs)
);
assign reg2hw.masked_oe_lower.mask.qe = masked_oe_lower_qe;
// R[masked_oe_upper]: V(True)
logic masked_oe_upper_qe;
logic [1:0] masked_oe_upper_flds_we;
assign masked_oe_upper_qe = &masked_oe_upper_flds_we;
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_oe_upper_data (
.re (masked_oe_upper_re),
.we (masked_oe_upper_we),
.wd (masked_oe_upper_data_wd),
.d (hw2reg.masked_oe_upper.data.d),
.qre (),
.qe (masked_oe_upper_flds_we[0]),
.q (reg2hw.masked_oe_upper.data.q),
.ds (),
.qs (masked_oe_upper_data_qs)
);
assign reg2hw.masked_oe_upper.data.qe = masked_oe_upper_qe;
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_oe_upper_mask (
.re (masked_oe_upper_re),
.we (masked_oe_upper_we),
.wd (masked_oe_upper_mask_wd),
.d (hw2reg.masked_oe_upper.mask.d),
.qre (),
.qe (masked_oe_upper_flds_we[1]),
.q (reg2hw.masked_oe_upper.mask.q),
.ds (),
.qs (masked_oe_upper_mask_qs)
);
assign reg2hw.masked_oe_upper.mask.qe = masked_oe_upper_qe;
// R[intr_ctrl_en_rising]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_intr_ctrl_en_rising (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_ctrl_en_rising_we),
.wd (intr_ctrl_en_rising_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_rising.q),
.ds (),
// to register interface (read)
.qs (intr_ctrl_en_rising_qs)
);
// R[intr_ctrl_en_falling]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_intr_ctrl_en_falling (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_ctrl_en_falling_we),
.wd (intr_ctrl_en_falling_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_falling.q),
.ds (),
// to register interface (read)
.qs (intr_ctrl_en_falling_qs)
);
// R[intr_ctrl_en_lvlhigh]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_intr_ctrl_en_lvlhigh (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_ctrl_en_lvlhigh_we),
.wd (intr_ctrl_en_lvlhigh_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_lvlhigh.q),
.ds (),
// to register interface (read)
.qs (intr_ctrl_en_lvlhigh_qs)
);
// R[intr_ctrl_en_lvllow]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_intr_ctrl_en_lvllow (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_ctrl_en_lvllow_we),
.wd (intr_ctrl_en_lvllow_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_lvllow.q),
.ds (),
// to register interface (read)
.qs (intr_ctrl_en_lvllow_qs)
);
// R[ctrl_en_input_filter]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_ctrl_en_input_filter (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_en_input_filter_we),
.wd (ctrl_en_input_filter_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl_en_input_filter.q),
.ds (),
// to register interface (read)
.qs (ctrl_en_input_filter_qs)
);
logic [15:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == GPIO_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == GPIO_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == GPIO_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == GPIO_ALERT_TEST_OFFSET);
addr_hit[ 4] = (reg_addr == GPIO_DATA_IN_OFFSET);
addr_hit[ 5] = (reg_addr == GPIO_DIRECT_OUT_OFFSET);
addr_hit[ 6] = (reg_addr == GPIO_MASKED_OUT_LOWER_OFFSET);
addr_hit[ 7] = (reg_addr == GPIO_MASKED_OUT_UPPER_OFFSET);
addr_hit[ 8] = (reg_addr == GPIO_DIRECT_OE_OFFSET);
addr_hit[ 9] = (reg_addr == GPIO_MASKED_OE_LOWER_OFFSET);
addr_hit[10] = (reg_addr == GPIO_MASKED_OE_UPPER_OFFSET);
addr_hit[11] = (reg_addr == GPIO_INTR_CTRL_EN_RISING_OFFSET);
addr_hit[12] = (reg_addr == GPIO_INTR_CTRL_EN_FALLING_OFFSET);
addr_hit[13] = (reg_addr == GPIO_INTR_CTRL_EN_LVLHIGH_OFFSET);
addr_hit[14] = (reg_addr == GPIO_INTR_CTRL_EN_LVLLOW_OFFSET);
addr_hit[15] = (reg_addr == GPIO_CTRL_EN_INPUT_FILTER_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(GPIO_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(GPIO_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(GPIO_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(GPIO_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(GPIO_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(GPIO_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(GPIO_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(GPIO_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(GPIO_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(GPIO_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(GPIO_PERMIT[10] & ~reg_be))) |
(addr_hit[11] & (|(GPIO_PERMIT[11] & ~reg_be))) |
(addr_hit[12] & (|(GPIO_PERMIT[12] & ~reg_be))) |
(addr_hit[13] & (|(GPIO_PERMIT[13] & ~reg_be))) |
(addr_hit[14] & (|(GPIO_PERMIT[14] & ~reg_be))) |
(addr_hit[15] & (|(GPIO_PERMIT[15] & ~reg_be)))));
end
// Generate write-enables
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_wd = reg_wdata[31:0];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_wd = reg_wdata[31:0];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_wd = reg_wdata[31:0];
assign alert_test_we = addr_hit[3] & reg_we & !reg_error;
assign alert_test_wd = reg_wdata[0];
assign direct_out_re = addr_hit[5] & reg_re & !reg_error;
assign direct_out_we = addr_hit[5] & reg_we & !reg_error;
assign direct_out_wd = reg_wdata[31:0];
assign masked_out_lower_re = addr_hit[6] & reg_re & !reg_error;
assign masked_out_lower_we = addr_hit[6] & reg_we & !reg_error;
assign masked_out_lower_data_wd = reg_wdata[15:0];
assign masked_out_lower_mask_wd = reg_wdata[31:16];
assign masked_out_upper_re = addr_hit[7] & reg_re & !reg_error;
assign masked_out_upper_we = addr_hit[7] & reg_we & !reg_error;
assign masked_out_upper_data_wd = reg_wdata[15:0];
assign masked_out_upper_mask_wd = reg_wdata[31:16];
assign direct_oe_re = addr_hit[8] & reg_re & !reg_error;
assign direct_oe_we = addr_hit[8] & reg_we & !reg_error;
assign direct_oe_wd = reg_wdata[31:0];
assign masked_oe_lower_re = addr_hit[9] & reg_re & !reg_error;
assign masked_oe_lower_we = addr_hit[9] & reg_we & !reg_error;
assign masked_oe_lower_data_wd = reg_wdata[15:0];
assign masked_oe_lower_mask_wd = reg_wdata[31:16];
assign masked_oe_upper_re = addr_hit[10] & reg_re & !reg_error;
assign masked_oe_upper_we = addr_hit[10] & reg_we & !reg_error;
assign masked_oe_upper_data_wd = reg_wdata[15:0];
assign masked_oe_upper_mask_wd = reg_wdata[31:16];
assign intr_ctrl_en_rising_we = addr_hit[11] & reg_we & !reg_error;
assign intr_ctrl_en_rising_wd = reg_wdata[31:0];
assign intr_ctrl_en_falling_we = addr_hit[12] & reg_we & !reg_error;
assign intr_ctrl_en_falling_wd = reg_wdata[31:0];
assign intr_ctrl_en_lvlhigh_we = addr_hit[13] & reg_we & !reg_error;
assign intr_ctrl_en_lvlhigh_wd = reg_wdata[31:0];
assign intr_ctrl_en_lvllow_we = addr_hit[14] & reg_we & !reg_error;
assign intr_ctrl_en_lvllow_wd = reg_wdata[31:0];
assign ctrl_en_input_filter_we = addr_hit[15] & reg_we & !reg_error;
assign ctrl_en_input_filter_wd = reg_wdata[31:0];
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = intr_state_we;
reg_we_check[1] = intr_enable_we;
reg_we_check[2] = intr_test_we;
reg_we_check[3] = alert_test_we;
reg_we_check[4] = 1'b0;
reg_we_check[5] = direct_out_we;
reg_we_check[6] = masked_out_lower_we;
reg_we_check[7] = masked_out_upper_we;
reg_we_check[8] = direct_oe_we;
reg_we_check[9] = masked_oe_lower_we;
reg_we_check[10] = masked_oe_upper_we;
reg_we_check[11] = intr_ctrl_en_rising_we;
reg_we_check[12] = intr_ctrl_en_falling_we;
reg_we_check[13] = intr_ctrl_en_lvlhigh_we;
reg_we_check[14] = intr_ctrl_en_lvllow_we;
reg_we_check[15] = ctrl_en_input_filter_we;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[31:0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[31:0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
end
addr_hit[4]: begin
reg_rdata_next[31:0] = data_in_qs;
end
addr_hit[5]: begin
reg_rdata_next[31:0] = direct_out_qs;
end
addr_hit[6]: begin
reg_rdata_next[15:0] = masked_out_lower_data_qs;
reg_rdata_next[31:16] = '0;
end
addr_hit[7]: begin
reg_rdata_next[15:0] = masked_out_upper_data_qs;
reg_rdata_next[31:16] = '0;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = direct_oe_qs;
end
addr_hit[9]: begin
reg_rdata_next[15:0] = masked_oe_lower_data_qs;
reg_rdata_next[31:16] = masked_oe_lower_mask_qs;
end
addr_hit[10]: begin
reg_rdata_next[15:0] = masked_oe_upper_data_qs;
reg_rdata_next[31:16] = masked_oe_upper_mask_qs;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = intr_ctrl_en_rising_qs;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = intr_ctrl_en_falling_qs;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = intr_ctrl_en_lvlhigh_qs;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = intr_ctrl_en_lvllow_qs;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = ctrl_en_input_filter_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule