blob: d08f8c60ca5eed05f5d4d55df6c28ad07517f81e [file] [log] [blame]
# Copyright lowRISC contributors.
# Licensed under the Apache License, Version 2.0, see LICENSE for details.
# SPDX-License-Identifier: Apache-2.0
import struct
from typing import List, Sequence
from shared.mem_layout import get_memory_layout
from .trace import Trace
class TraceDmemStore(Trace):
def __init__(self, addr: int, value: int, is_wide: bool):
self.addr = addr
self.value = value
self.is_wide = is_wide
def trace(self) -> str:
num_bytes = 32 if self.is_wide else 4
top = self.addr + num_bytes - 1
return 'dmem[{:#x}..{:#x}] = {:#x}'.format(self.addr, top, self.value)
class Dmem:
'''An object representing OTBN's DMEM.
Memory is stored as an array of 32-byte words (the native width for the
OTBN wide side). These words are stored as 256-bit unsigned integers. This
is the same width as the wide-side registers (to avoid unnecessary
packing/unpacking work), but the unsigned values simplify tracing.
'''
def __init__(self) -> None:
_, dmem_size = get_memory_layout()['DMEM']
# Check the arguments look sensible, to avoid allocating massive chunks
# of memory. We know we won't have more than 1 MiB of DMEM.
if dmem_size > 1024 * 1024:
raise RuntimeError('Implausibly large DMEM size: {}'
.format(dmem_size))
# We're going to store DMEM as an array of 32-byte words (the native
# width for the OTBN wide side). Of course, that means dmem_size needs
# to be divisible by 32.
if dmem_size % 32:
raise RuntimeError('DMEM size ({}) is not divisible by 32.'
.format(dmem_size))
num_words = dmem_size // 4
# Initialise the memory to an arbitrary "bad" constant (here,
# 0xdeadbeef). We could initialise to a random value, but maybe it's
# more helpful to generate something recognisable for now.
uninit = 0xdeadbeef
self.data = [uninit] * num_words
self.trace = [] # type: List[TraceDmemStore]
def _load_5byte_le_words(self, data: bytes) -> None:
'''Replace the start of memory with data
The bytes loaded should represent each 32-bit word with 5 bytes,
consisting of a validity byte (0 or 1) followed by 4 bytes for the word
itself.
'''
if len(data) % 5:
raise ValueError('Trying to load {} bytes of data, '
'which is not a multiple of 5.'
.format(len(data)))
len_data_32 = len(data) // 5
len_mem_32 = (256 // 32) * len(self.data)
if len_data_32 > len_mem_32:
raise ValueError('Trying to load {} bytes of data, but DMEM '
'is only {} bytes long.'
.format(4 * len_data_32, 32 * len(self.data)))
# Zero-pad up to the next 32-bit word, represented by 5 bytes. Because
# things are little-endian, this is like zero-extending the last word.
if len(data) % 5:
data = data + b'0' * (5 - (len(data) % 5))
for idx32, (vld, u32) in enumerate(struct.iter_unpack('<BI', data)):
if vld not in [0, 1]:
raise ValueError('The validity byte for 32-bit word {} '
'in the input data is {}, not 0 or 1.'
.format(idx32, vld))
# TODO: Take account of validity bit here!
self.data[idx32] = u32
def _load_4byte_le_words(self, data: bytes) -> None:
'''Replace the start of memory with data
The bytes loaded should represent each 32-bit word with 4 bytes in
little-endian format.
'''
if len(data) > 32 * len(self.data):
raise ValueError('Trying to load {} bytes of data, but DMEM '
'is only {} bytes long.'
.format(len(data), 32 * len(self.data)))
# Zero-pad bytes up to the next multiple of 32 bits (because things
# are little-endian, is like zero-extending the last word).
if len(data) % 4:
data = data + b'0' * (32 - (len(data) % 32))
for idx32, u32 in enumerate(struct.iter_unpack('<I', data)):
self.data[idx32] = u32[0]
def load_le_words(self, data: bytes, has_validity: bool) -> None:
'''Replace the start of memory with data
Uses the 5-byte format if has_validity is true and the 4-byte format
otherwise.
'''
if has_validity:
self._load_5byte_le_words(data)
else:
self._load_4byte_le_words(data)
def dump_le_words(self) -> bytes:
'''Return the contents of memory as bytes.
The bytes are formatted as little-endian 32-bit words. These
words are themselves packed little-endian into 256-bit words.
'''
ret = b''
for u32 in self.data:
ret += struct.pack('<BI', 1, u32)
return ret
def is_valid_256b_addr(self, addr: int) -> bool:
'''Return true if this is a valid address for a BN.LID/BN.SID'''
assert addr >= 0
if addr & 31:
return False
word_addr = addr // 4
if word_addr >= len(self.data):
return False
return True
def load_u256(self, addr: int) -> int:
'''Read a u256 little-endian value from an aligned address'''
assert addr >= 0
assert self.is_valid_256b_addr(addr)
ret_data = 0
for i in range(256 // 32):
rd_data = self.data[(addr // 4) + i]
ret_data = ret_data | (rd_data << (i * 32))
return ret_data
def store_u256(self, addr: int, value: int) -> None:
'''Write a u256 little-endian value to an aligned address'''
assert addr >= 0
assert 0 <= value < (1 << 256)
assert self.is_valid_256b_addr(addr)
self.trace.append(TraceDmemStore(addr, value, True))
def is_valid_32b_addr(self, addr: int) -> bool:
'''Return true if this is a valid address for a LW/SW instruction'''
assert addr >= 0
if addr & 3:
return False
if (addr + 3) // 4 >= len(self.data):
return False
return True
def load_u32(self, addr: int) -> int:
'''Read a 32-bit value from memory.
addr should be 4-byte aligned. The result is returned as an unsigned
32-bit integer.
'''
assert addr >= 0
assert self.is_valid_32b_addr(addr)
return self.data[addr // 4]
def store_u32(self, addr: int, value: int) -> None:
'''Store a 32-bit unsigned value to memory.
addr should be 4-byte aligned.
'''
assert addr >= 0
assert 0 <= value <= (1 << 32) - 1
assert self.is_valid_32b_addr(addr)
self.trace.append(TraceDmemStore(addr, value, False))
def changes(self) -> Sequence[Trace]:
return self.trace
def _commit_store(self, item: TraceDmemStore) -> None:
if item.is_wide:
assert 0 <= item.value < (1 << 256)
mask = (1 << 32) - 1
for i in range(256 // 32):
wr_data = (item.value >> (i * 32)) & mask
self.data[(item.addr // 4) + i] = wr_data
return
else:
self.data[item.addr // 4] = item.value
assert 0 <= item.value <= (1 << 32) - 1
def commit(self) -> None:
for item in self.trace:
self._commit_store(item)
self.trace = []
def abort(self) -> None:
self.trace = []