blob: 6eed3fbca79f81a43f8d7b1f56c9c5aca7f81dfd [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/lib/dif/dif_otbn.h"
#include "sw/device/lib/irq.h"
#include "sw/device/lib/runtime/ibex.h"
#include "sw/device/lib/runtime/log.h"
#include "sw/device/lib/runtime/otbn.h"
#include "sw/device/lib/testing/entropy_testutils.h"
#include "sw/device/lib/testing/rv_plic_testutils.h"
#include "sw/device/lib/testing/test_framework/check.h"
#include "sw/device/lib/testing/test_framework/ottf_main.h"
#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h"
/**
* ECDSA sign and verify test with the NIST P-256 curve using OTBN.
*
* IMPORTANT: This test is not a secure, complete, or reusable implementation of
* a cryptographic algorithm; it is not even close to being production-ready.
* It is only meant as an end-to-end test for OTBN during the bringup phase.
*
* The test contains constants and expected output, which can be independently
* and conveniently verified using a Python script.
*
* <code>
* # Optional: generate a new key
* $ openssl ecparam -name prime256v1 -genkey -noout -out \
* otbn_ecdsa_p256_test_private_key.pem
*
* # Create all constants/variables
* $ ./otbn_test_params.py ecc otbn_ecdsa_p256_test_private_key.pem
* </code>
*/
OTBN_DECLARE_APP_SYMBOLS(p256_ecdsa);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, dptr_msg);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, dptr_r);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, dptr_s);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, dptr_x);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, dptr_y);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, dptr_d);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, dptr_x_r);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, mode);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, msg);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, r);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, s);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, x);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, y);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, d);
OTBN_DECLARE_SYMBOL_ADDR(p256_ecdsa, x_r);
static const otbn_app_t kOtbnAppP256Ecdsa = OTBN_APP_T_INIT(p256_ecdsa);
static const otbn_addr_t kOtbnVarDptrMsg =
OTBN_ADDR_T_INIT(p256_ecdsa, dptr_msg);
static const otbn_addr_t kOtbnVarDptrR = OTBN_ADDR_T_INIT(p256_ecdsa, dptr_r);
static const otbn_addr_t kOtbnVarDptrS = OTBN_ADDR_T_INIT(p256_ecdsa, dptr_s);
static const otbn_addr_t kOtbnVarDptrX = OTBN_ADDR_T_INIT(p256_ecdsa, dptr_x);
static const otbn_addr_t kOtbnVarDptrY = OTBN_ADDR_T_INIT(p256_ecdsa, dptr_y);
static const otbn_addr_t kOtbnVarDptrD = OTBN_ADDR_T_INIT(p256_ecdsa, dptr_d);
static const otbn_addr_t kOtbnVarDptrXR =
OTBN_ADDR_T_INIT(p256_ecdsa, dptr_x_r);
static const otbn_addr_t kOtbnVarMode = OTBN_ADDR_T_INIT(p256_ecdsa, mode);
static const otbn_addr_t kOtbnVarMsg = OTBN_ADDR_T_INIT(p256_ecdsa, msg);
static const otbn_addr_t kOtbnVarR = OTBN_ADDR_T_INIT(p256_ecdsa, r);
static const otbn_addr_t kOtbnVarS = OTBN_ADDR_T_INIT(p256_ecdsa, s);
static const otbn_addr_t kOtbnVarX = OTBN_ADDR_T_INIT(p256_ecdsa, x);
static const otbn_addr_t kOtbnVarY = OTBN_ADDR_T_INIT(p256_ecdsa, y);
static const otbn_addr_t kOtbnVarD = OTBN_ADDR_T_INIT(p256_ecdsa, d);
static const otbn_addr_t kOtbnVarXR = OTBN_ADDR_T_INIT(p256_ecdsa, x_r);
const test_config_t kTestConfig;
/**
* The plic dif to access the hardware.
*/
static dif_rv_plic_t plic;
/**
* The otbn context handler.
*/
static otbn_t otbn_ctx;
/**
* The peripheral which fired the irq to be filled by the irq handler.
*/
static volatile top_earlgrey_plic_peripheral_t plic_peripheral;
/**
* The irq id to be filled by the irq handler.
*/
static volatile dif_rv_plic_irq_id_t irq_id;
/**
* The otbn irq to be filled by the irq handler.
*/
static volatile dif_otbn_irq_t irq;
/**
* Provides external IRQ handling for otbn tests.
*
* This function overrides the default OTTF external ISR.
*
* It performs the following:
* 1. Claims the IRQ fired (finds PLIC IRQ index).
* 2. Compute the OTBN peripheral.
* 3. Compute the otbn irq.
* 4. Clears the IRQ at the peripheral.
* 5. Completes the IRQ service at PLIC.
*/
void ottf_external_isr(void) {
CHECK_DIF_OK(dif_rv_plic_irq_claim(&plic, kTopEarlgreyPlicTargetIbex0,
(dif_rv_plic_irq_id_t *)&irq_id));
plic_peripheral = (top_earlgrey_plic_peripheral_t)
top_earlgrey_plic_interrupt_for_peripheral[irq_id];
irq = (dif_otbn_irq_t)(irq_id -
(dif_rv_plic_irq_id_t)kTopEarlgreyPlicIrqIdOtbnDone);
CHECK_DIF_OK(dif_otbn_irq_acknowledge(&otbn_ctx.dif, irq));
// Complete the IRQ by writing the IRQ source to the Ibex specific CC.
// register.
CHECK_DIF_OK(
dif_rv_plic_irq_complete(&plic, kTopEarlgreyPlicTargetIbex0, irq_id));
}
static void otbn_wait_for_done_irq(otbn_t *otbn_ctx) {
// Clear the otbn irq variable: we'll set it in the interrupt handler when
// we see the Done interrupt fire.
irq = UINT32_MAX;
irq_id = UINT32_MAX;
plic_peripheral = UINT32_MAX;
// Enable Done interrupt.
CHECK_DIF_OK(dif_otbn_irq_set_enabled(&otbn_ctx->dif, kDifOtbnIrqDone,
kDifToggleEnabled));
// At this point, OTBN should be running. Wait for an interrupt that says
// it's done.
while (true) {
// This looks a bit odd, but is needed to avoid a race condition where the
// OTBN interrupt comes in after we load the otbn_finished flag but before
// we run the WFI instruction. The trick is that WFI returns when an
// interrupt comes in even if interrupts are globally disabled, which means
// that the WFI can actually sit *inside* the critical section.
irq_global_ctrl(false);
if (plic_peripheral != UINT32_MAX) {
break;
}
wait_for_interrupt();
irq_global_ctrl(true);
}
irq_global_ctrl(true);
CHECK(plic_peripheral == kTopEarlgreyPlicPeripheralOtbn,
"Interrupt from incorrect peripheral: (exp: %d, obs: %s)",
kTopEarlgreyPlicPeripheralOtbn, plic_peripheral);
// Check this is the interrupt we expected.
CHECK(irq_id == kTopEarlgreyPlicIrqIdOtbnDone);
// Disable Done interrupt.
CHECK_DIF_OK(dif_otbn_irq_set_enabled(&otbn_ctx->dif, kDifOtbnIrqDone,
kDifToggleDisabled));
}
static void otbn_init_irq(void) {
mmio_region_t plic_base_addr =
mmio_region_from_addr(TOP_EARLGREY_RV_PLIC_BASE_ADDR);
// Initialize PLIC and configure OTBN interrupt.
CHECK_DIF_OK(dif_rv_plic_init(plic_base_addr, &plic));
// Set interrupt priority to be positive.
dif_rv_plic_irq_id_t irq_id = kTopEarlgreyPlicIrqIdOtbnDone;
CHECK_DIF_OK(dif_rv_plic_irq_set_priority(&plic, irq_id, 0x1));
CHECK_DIF_OK(dif_rv_plic_irq_set_enabled(
&plic, irq_id, kTopEarlgreyPlicTargetIbex0, kDifToggleEnabled));
// Set the threshold for Ibex to 0.
CHECK_DIF_OK(dif_rv_plic_target_set_threshold(
&plic, kTopEarlgreyPlicTargetIbex0, 0x0));
// Enable the external IRQ (so that we see the interrupt from the PLIC).
irq_global_ctrl(true);
irq_external_ctrl(true);
}
/**
* CHECK()s that the actual data matches the expected data.
*
* @param actual The actual data.
* @param expected The expected data.
* @param size_bytes The size of the actual/expected data.
*/
static void check_data(const char *msg, const uint8_t *actual,
const uint8_t *expected, size_t size_bytes) {
for (int i = 0; i < size_bytes; ++i) {
CHECK(actual[i] == expected[i],
"%s: mismatch at byte %d: 0x%x (actual) != 0x%x (expected)", msg, i,
actual[i], expected[i]);
}
}
/**
* Starts a profiling section.
*
* Call this function at the start of a section that should be profiled, and
* call `profile_end()` at the end of it to display the results.
*
* @return The cycle counter when starting the profiling.
*/
static uint64_t profile_start(void) { return ibex_mcycle_read(); }
/**
* Ends a profiling section.
*
* The time since `profile_start()` is printed as log message.
*
* @param t_start Start timestamp, as returned from profile_start().
* @param msg Name of the operation (for logging purposes).
*/
static void profile_end(uint64_t t_start, const char *msg) {
uint64_t t_end = ibex_mcycle_read();
uint32_t cycles = t_end - t_start;
uint32_t time_us = cycles / 100;
LOG_INFO("%s took %u cycles or %u us @ 100 MHz.", msg, cycles, time_us);
}
/**
* Makes a single dptr in the P256 library point to where its value is stored.
*/
static void setup_data_pointer(otbn_t *otbn_ctx, otbn_addr_t dptr,
otbn_addr_t value) {
CHECK(otbn_copy_data_to_otbn(otbn_ctx, sizeof(value), &value, dptr) ==
kOtbnOk);
}
/**
* Sets up all data pointers used by the P256 library to point to DMEM.
*
* The ECDSA P256 OTBN library makes use of "named" data pointers as part of
* its calling convention, which are exposed as symbol starting with `dptr_`.
* The DMEM locations these pointers refer to is not mandated by the P256
* calling convention; the values can be placed anywhere in OTBN DMEM.
*
* As convenience, `ecdsa_p256.s` pre-allocates space for the data values.
*
* This function makes the data pointers refer to the pre-allocated DMEM
* regions to store the actual values.
*/
static void setup_data_pointers(otbn_t *otbn_ctx) {
setup_data_pointer(otbn_ctx, kOtbnVarDptrMsg, kOtbnVarMsg);
setup_data_pointer(otbn_ctx, kOtbnVarDptrR, kOtbnVarR);
setup_data_pointer(otbn_ctx, kOtbnVarDptrS, kOtbnVarS);
setup_data_pointer(otbn_ctx, kOtbnVarDptrX, kOtbnVarX);
setup_data_pointer(otbn_ctx, kOtbnVarDptrY, kOtbnVarY);
setup_data_pointer(otbn_ctx, kOtbnVarDptrD, kOtbnVarD);
setup_data_pointer(otbn_ctx, kOtbnVarDptrXR, kOtbnVarXR);
}
/**
* Signs a message with ECDSA using the P-256 curve.
*
* @param otbn_ctx The OTBN context object.
* @param msg The message to sign (32B).
* @param private_key_d The private key (32B).
* @param[out] signature_r Signature component r (the x-coordinate of R).
* Provide a pre-allocated 32B buffer.
* @param[out] signature_s Signature component s (the proof).
* Provide a pre-allocated 32B buffer.
*/
static void p256_ecdsa_sign(otbn_t *otbn_ctx, const uint8_t *msg,
const uint8_t *private_key_d, uint8_t *signature_r,
uint8_t *signature_s) {
CHECK(otbn_ctx != NULL);
// Set pointers to input arguments.
setup_data_pointers(otbn_ctx);
// Write input arguments.
uint32_t mode = 1; // mode 1 => sign
CHECK(otbn_copy_data_to_otbn(otbn_ctx, sizeof(mode), &mode, kOtbnVarMode) ==
kOtbnOk);
CHECK(otbn_copy_data_to_otbn(otbn_ctx, /*len_bytes=*/32, msg, kOtbnVarMsg) ==
kOtbnOk);
CHECK(otbn_copy_data_to_otbn(otbn_ctx, /*len_bytes=*/32, private_key_d,
kOtbnVarD) == kOtbnOk);
// Call OTBN to perform operation, and wait for it to complete.
CHECK(otbn_execute(otbn_ctx) == kOtbnOk);
otbn_wait_for_done_irq(otbn_ctx);
// Read back results.
CHECK(otbn_copy_data_from_otbn(otbn_ctx, /*len_bytes=*/32, kOtbnVarR,
signature_r) == kOtbnOk);
CHECK(otbn_copy_data_from_otbn(otbn_ctx, /*len_bytes=*/32, kOtbnVarS,
signature_s) == kOtbnOk);
}
/**
* Verifies a message with ECDSA using the P-256 curve.
*
* @param otbn_ctx The OTBN context object.
* @param msg The message to verify (32B).
* @param signature_r The signature component r (the proof) (32B).
* @param signature_s The signature component s (the proof) (32B).
* @param public_key_x The public key x-coordinate (32B).
* @param public_key_y The public key y-coordinate (32B).
* @param[out] signature_x_r Recovered point x_r (== R'.x). Provide a
* pre-allocated 32B buffer.
*/
static void p256_ecdsa_verify(otbn_t *otbn_ctx, const uint8_t *msg,
const uint8_t *signature_r,
const uint8_t *signature_s,
const uint8_t *public_key_x,
const uint8_t *public_key_y,
uint8_t *signature_x_r) {
CHECK(otbn_ctx != NULL);
// Set pointers to input arguments.
setup_data_pointers(otbn_ctx);
// Write input arguments.
uint32_t mode = 2; // mode 2 => verify
CHECK(otbn_copy_data_to_otbn(otbn_ctx, sizeof(mode), &mode, kOtbnVarMode) ==
kOtbnOk);
CHECK(otbn_copy_data_to_otbn(otbn_ctx, /*len_bytes=*/32, msg, kOtbnVarMsg) ==
kOtbnOk);
CHECK(otbn_copy_data_to_otbn(otbn_ctx, /*len_bytes=*/32, signature_r,
kOtbnVarR) == kOtbnOk);
CHECK(otbn_copy_data_to_otbn(otbn_ctx, /*len_bytes=*/32, signature_s,
kOtbnVarS) == kOtbnOk);
CHECK(otbn_copy_data_to_otbn(otbn_ctx, /*len_bytes=*/32, public_key_x,
kOtbnVarX) == kOtbnOk);
CHECK(otbn_copy_data_to_otbn(otbn_ctx, /*len_bytes=*/32, public_key_y,
kOtbnVarY) == kOtbnOk);
// Call OTBN to perform operation, and wait for it to complete.
CHECK(otbn_execute(otbn_ctx) == kOtbnOk);
otbn_wait_for_done_irq(otbn_ctx);
// Read back results.
CHECK(otbn_copy_data_from_otbn(otbn_ctx, /*len_bytes=*/32, kOtbnVarXR,
signature_x_r) == kOtbnOk);
}
/**
* Performs a ECDSA roundtrip test using the NIST P-256 curve.
*
* A roundtrip consists of three steps: Initialize OTBN, sign, and verify.
*/
static void test_ecdsa_p256_roundtrip(void) {
// Message
static const uint8_t kIn[32] = {"Hello OTBN."};
// Public key x-coordinate (Q.x)
static const uint8_t kPublicKeyQx[32] = {
0x4e, 0xb2, 0x8b, 0x55, 0xeb, 0x88, 0x62, 0x24, 0xf2, 0xbf, 0x1b,
0x9e, 0xd8, 0x4a, 0x09, 0xa7, 0x86, 0x67, 0x92, 0xcd, 0xca, 0x07,
0x5d, 0x07, 0x82, 0xe7, 0x2d, 0xac, 0x31, 0x14, 0x79, 0x1f};
// Public key y-coordinate (Q.y)
static const uint8_t kPublicKeyQy[32] = {
0x27, 0x9c, 0xe4, 0x23, 0x24, 0x10, 0xa2, 0xfa, 0xbd, 0x53, 0x73,
0xf1, 0xa5, 0x08, 0xf0, 0x40, 0x9e, 0xc0, 0x55, 0x21, 0xa4, 0xf0,
0x54, 0x59, 0x00, 0x3e, 0x5f, 0x15, 0x3c, 0xc6, 0x4b, 0x87};
// Private key (d)
static const uint8_t kPrivateKeyD[32] = {
0xcd, 0xb4, 0x57, 0xaf, 0x1c, 0x9f, 0x4c, 0x74, 0x02, 0x0c, 0x7e,
0x8b, 0xe9, 0x93, 0x3e, 0x28, 0x0c, 0xf0, 0x18, 0x0d, 0xf4, 0x6c,
0x0b, 0xda, 0x7a, 0xbb, 0xe6, 0x8f, 0xb7, 0xa0, 0x45, 0x55};
// Initialize
uint64_t t_start_init = profile_start();
CHECK(otbn_init(&otbn_ctx, mmio_region_from_addr(
TOP_EARLGREY_OTBN_BASE_ADDR)) == kOtbnOk);
otbn_init_irq();
CHECK(otbn_load_app(&otbn_ctx, kOtbnAppP256Ecdsa) == kOtbnOk);
profile_end(t_start_init, "Initialization");
// Sign
uint8_t signature_r[32] = {0};
uint8_t signature_s[32] = {0};
LOG_INFO("Signing");
uint64_t t_start_sign = profile_start();
p256_ecdsa_sign(&otbn_ctx, kIn, kPrivateKeyD, signature_r, signature_s);
profile_end(t_start_sign, "Sign");
// Clear OTBN memory and reload app
LOG_INFO("Clearing OTBN memory and reloading app");
CHECK(otbn_zero_data_memory(&otbn_ctx) == kOtbnOk);
CHECK(otbn_load_app(&otbn_ctx, kOtbnAppP256Ecdsa) == kOtbnOk);
// Verify
uint8_t signature_x_r[32] = {0};
LOG_INFO("Verifying");
uint64_t t_start_verify = profile_start();
p256_ecdsa_verify(&otbn_ctx, kIn, signature_r, signature_s, kPublicKeyQx,
kPublicKeyQy, signature_x_r);
// Include the r =? x_r comparison in the profiling as this is something
// either OTBN or the host CPU needs to do as part of the signature
// verification.
check_data("signature_x_r", signature_r, signature_x_r, 32);
profile_end(t_start_verify, "Verify");
// Clear OTBN memory
LOG_INFO("Clearing OTBN memory");
CHECK(otbn_zero_data_memory(&otbn_ctx) == kOtbnOk);
}
bool test_main() {
entropy_testutils_boot_mode_init();
test_ecdsa_p256_roundtrip();
return true;
}