blob: 0a0e54f4431167cce93a6527c8e52a844736d43f [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
module gpio_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output gpio_reg_pkg::gpio_reg2hw_t reg2hw, // Write
input gpio_reg_pkg::gpio_hw2reg_t hw2reg // Read
);
import gpio_reg_pkg::* ;
localparam AW = 6;
localparam DW = 32;
localparam DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic malformed, addrmiss;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
assign tl_reg_h2d = tl_i;
assign tl_o = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = malformed | addrmiss ;
// Malformed request check only affects to the write access
always_comb begin : malformed_check
if (reg_we && (reg_be != '1)) begin
malformed = 1'b1;
end else begin
malformed = 1'b0;
end
end
// TODO(eunchan): Revise Register Interface logic after REG INTF finalized
// TODO(eunchan): Make concrete scenario
// 1. Write: No response, so that it can guarantee a request completes a clock after we
// It means, bus_reg_ready doesn't have to be lowered.
// 2. Read: response. So bus_reg_ready should assert after reg_bus_valid & reg_bus_ready
// _____ _____
// a_valid _____/ \_______/ \______
// ___________ _____
// a_ready \_______/ \______ <- ERR though no logic malfunction
// _____________
// d_valid ___________/ \______
// _____
// d_ready ___________________/ \______
//
// Above example is fine but if r.b.r doesn't assert within two cycle, then it can be wrong.
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic [31:0] intr_state_qs;
logic [31:0] intr_state_wd;
logic intr_state_we;
logic [31:0] intr_enable_qs;
logic [31:0] intr_enable_wd;
logic intr_enable_we;
logic [31:0] intr_test_wd;
logic intr_test_we;
logic [31:0] data_in_qs;
logic [31:0] direct_out_qs;
logic [31:0] direct_out_wd;
logic direct_out_we;
logic direct_out_re;
logic [15:0] masked_out_lower_data_qs;
logic [15:0] masked_out_lower_data_wd;
logic masked_out_lower_data_we;
logic masked_out_lower_data_re;
logic [15:0] masked_out_lower_mask_wd;
logic masked_out_lower_mask_we;
logic [15:0] masked_out_upper_data_qs;
logic [15:0] masked_out_upper_data_wd;
logic masked_out_upper_data_we;
logic masked_out_upper_data_re;
logic [15:0] masked_out_upper_mask_wd;
logic masked_out_upper_mask_we;
logic [31:0] direct_oe_qs;
logic [31:0] direct_oe_wd;
logic direct_oe_we;
logic direct_oe_re;
logic [15:0] masked_oe_lower_data_qs;
logic [15:0] masked_oe_lower_data_wd;
logic masked_oe_lower_data_we;
logic masked_oe_lower_data_re;
logic [15:0] masked_oe_lower_mask_qs;
logic [15:0] masked_oe_lower_mask_wd;
logic masked_oe_lower_mask_we;
logic masked_oe_lower_mask_re;
logic [15:0] masked_oe_upper_data_qs;
logic [15:0] masked_oe_upper_data_wd;
logic masked_oe_upper_data_we;
logic masked_oe_upper_data_re;
logic [15:0] masked_oe_upper_mask_qs;
logic [15:0] masked_oe_upper_mask_wd;
logic masked_oe_upper_mask_we;
logic masked_oe_upper_mask_re;
logic [31:0] intr_ctrl_en_rising_qs;
logic [31:0] intr_ctrl_en_rising_wd;
logic intr_ctrl_en_rising_we;
logic [31:0] intr_ctrl_en_falling_qs;
logic [31:0] intr_ctrl_en_falling_wd;
logic intr_ctrl_en_falling_we;
logic [31:0] intr_ctrl_en_lvlhigh_qs;
logic [31:0] intr_ctrl_en_lvlhigh_wd;
logic intr_ctrl_en_lvlhigh_we;
logic [31:0] intr_ctrl_en_lvllow_qs;
logic [31:0] intr_ctrl_en_lvllow_wd;
logic intr_ctrl_en_lvllow_we;
logic [31:0] ctrl_en_input_filter_qs;
logic [31:0] ctrl_en_input_filter_wd;
logic ctrl_en_input_filter_we;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("W1C"),
.RESVAL (32'h0)
) u_intr_state (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q ),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_intr_enable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q ),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
prim_subreg_ext #(
.DW (32)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.qe),
.q (reg2hw.intr_test.q ),
.qs ()
);
// R[data_in]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RO"),
.RESVAL (32'h0)
) u_data_in (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.data_in.de),
.d (hw2reg.data_in.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (data_in_qs)
);
// R[direct_out]: V(True)
prim_subreg_ext #(
.DW (32)
) u_direct_out (
.re (direct_out_re),
.we (direct_out_we),
.wd (direct_out_wd),
.d (hw2reg.direct_out.d),
.qre (),
.qe (reg2hw.direct_out.qe),
.q (reg2hw.direct_out.q ),
.qs (direct_out_qs)
);
// R[masked_out_lower]: V(True)
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_out_lower_data (
.re (masked_out_lower_data_re),
.we (masked_out_lower_data_we),
.wd (masked_out_lower_data_wd),
.d (hw2reg.masked_out_lower.data.d),
.qre (),
.qe (reg2hw.masked_out_lower.data.qe),
.q (reg2hw.masked_out_lower.data.q ),
.qs (masked_out_lower_data_qs)
);
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_out_lower_mask (
.re (1'b0),
.we (masked_out_lower_mask_we),
.wd (masked_out_lower_mask_wd),
.d (hw2reg.masked_out_lower.mask.d),
.qre (),
.qe (reg2hw.masked_out_lower.mask.qe),
.q (reg2hw.masked_out_lower.mask.q ),
.qs ()
);
// R[masked_out_upper]: V(True)
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_out_upper_data (
.re (masked_out_upper_data_re),
.we (masked_out_upper_data_we),
.wd (masked_out_upper_data_wd),
.d (hw2reg.masked_out_upper.data.d),
.qre (),
.qe (reg2hw.masked_out_upper.data.qe),
.q (reg2hw.masked_out_upper.data.q ),
.qs (masked_out_upper_data_qs)
);
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_out_upper_mask (
.re (1'b0),
.we (masked_out_upper_mask_we),
.wd (masked_out_upper_mask_wd),
.d (hw2reg.masked_out_upper.mask.d),
.qre (),
.qe (reg2hw.masked_out_upper.mask.qe),
.q (reg2hw.masked_out_upper.mask.q ),
.qs ()
);
// R[direct_oe]: V(True)
prim_subreg_ext #(
.DW (32)
) u_direct_oe (
.re (direct_oe_re),
.we (direct_oe_we),
.wd (direct_oe_wd),
.d (hw2reg.direct_oe.d),
.qre (),
.qe (reg2hw.direct_oe.qe),
.q (reg2hw.direct_oe.q ),
.qs (direct_oe_qs)
);
// R[masked_oe_lower]: V(True)
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_oe_lower_data (
.re (masked_oe_lower_data_re),
.we (masked_oe_lower_data_we),
.wd (masked_oe_lower_data_wd),
.d (hw2reg.masked_oe_lower.data.d),
.qre (),
.qe (reg2hw.masked_oe_lower.data.qe),
.q (reg2hw.masked_oe_lower.data.q ),
.qs (masked_oe_lower_data_qs)
);
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_oe_lower_mask (
.re (masked_oe_lower_mask_re),
.we (masked_oe_lower_mask_we),
.wd (masked_oe_lower_mask_wd),
.d (hw2reg.masked_oe_lower.mask.d),
.qre (),
.qe (reg2hw.masked_oe_lower.mask.qe),
.q (reg2hw.masked_oe_lower.mask.q ),
.qs (masked_oe_lower_mask_qs)
);
// R[masked_oe_upper]: V(True)
// F[data]: 15:0
prim_subreg_ext #(
.DW (16)
) u_masked_oe_upper_data (
.re (masked_oe_upper_data_re),
.we (masked_oe_upper_data_we),
.wd (masked_oe_upper_data_wd),
.d (hw2reg.masked_oe_upper.data.d),
.qre (),
.qe (reg2hw.masked_oe_upper.data.qe),
.q (reg2hw.masked_oe_upper.data.q ),
.qs (masked_oe_upper_data_qs)
);
// F[mask]: 31:16
prim_subreg_ext #(
.DW (16)
) u_masked_oe_upper_mask (
.re (masked_oe_upper_mask_re),
.we (masked_oe_upper_mask_we),
.wd (masked_oe_upper_mask_wd),
.d (hw2reg.masked_oe_upper.mask.d),
.qre (),
.qe (reg2hw.masked_oe_upper.mask.qe),
.q (reg2hw.masked_oe_upper.mask.q ),
.qs (masked_oe_upper_mask_qs)
);
// R[intr_ctrl_en_rising]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_intr_ctrl_en_rising (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_ctrl_en_rising_we),
.wd (intr_ctrl_en_rising_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_rising.q ),
// to register interface (read)
.qs (intr_ctrl_en_rising_qs)
);
// R[intr_ctrl_en_falling]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_intr_ctrl_en_falling (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_ctrl_en_falling_we),
.wd (intr_ctrl_en_falling_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_falling.q ),
// to register interface (read)
.qs (intr_ctrl_en_falling_qs)
);
// R[intr_ctrl_en_lvlhigh]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_intr_ctrl_en_lvlhigh (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_ctrl_en_lvlhigh_we),
.wd (intr_ctrl_en_lvlhigh_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_lvlhigh.q ),
// to register interface (read)
.qs (intr_ctrl_en_lvlhigh_qs)
);
// R[intr_ctrl_en_lvllow]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_intr_ctrl_en_lvllow (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_ctrl_en_lvllow_we),
.wd (intr_ctrl_en_lvllow_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_ctrl_en_lvllow.q ),
// to register interface (read)
.qs (intr_ctrl_en_lvllow_qs)
);
// R[ctrl_en_input_filter]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_ctrl_en_input_filter (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_en_input_filter_we),
.wd (ctrl_en_input_filter_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ctrl_en_input_filter.q ),
// to register interface (read)
.qs (ctrl_en_input_filter_qs)
);
logic [14:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == GPIO_INTR_STATE_OFFSET);
addr_hit[1] = (reg_addr == GPIO_INTR_ENABLE_OFFSET);
addr_hit[2] = (reg_addr == GPIO_INTR_TEST_OFFSET);
addr_hit[3] = (reg_addr == GPIO_DATA_IN_OFFSET);
addr_hit[4] = (reg_addr == GPIO_DIRECT_OUT_OFFSET);
addr_hit[5] = (reg_addr == GPIO_MASKED_OUT_LOWER_OFFSET);
addr_hit[6] = (reg_addr == GPIO_MASKED_OUT_UPPER_OFFSET);
addr_hit[7] = (reg_addr == GPIO_DIRECT_OE_OFFSET);
addr_hit[8] = (reg_addr == GPIO_MASKED_OE_LOWER_OFFSET);
addr_hit[9] = (reg_addr == GPIO_MASKED_OE_UPPER_OFFSET);
addr_hit[10] = (reg_addr == GPIO_INTR_CTRL_EN_RISING_OFFSET);
addr_hit[11] = (reg_addr == GPIO_INTR_CTRL_EN_FALLING_OFFSET);
addr_hit[12] = (reg_addr == GPIO_INTR_CTRL_EN_LVLHIGH_OFFSET);
addr_hit[13] = (reg_addr == GPIO_INTR_CTRL_EN_LVLLOW_OFFSET);
addr_hit[14] = (reg_addr == GPIO_CTRL_EN_INPUT_FILTER_OFFSET);
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
addrmiss <= 1'b0;
end else if (reg_re || reg_we) begin
addrmiss <= ~|addr_hit;
end
end
// Write Enable signal
assign intr_state_we = addr_hit[0] && reg_we;
assign intr_state_wd = reg_wdata[31:0];
assign intr_enable_we = addr_hit[1] && reg_we;
assign intr_enable_wd = reg_wdata[31:0];
assign intr_test_we = addr_hit[2] && reg_we;
assign intr_test_wd = reg_wdata[31:0];
assign direct_out_we = addr_hit[4] && reg_we;
assign direct_out_wd = reg_wdata[31:0];
assign direct_out_re = addr_hit[4] && reg_re;
assign masked_out_lower_data_we = addr_hit[5] && reg_we;
assign masked_out_lower_data_wd = reg_wdata[15:0];
assign masked_out_lower_data_re = addr_hit[5] && reg_re;
assign masked_out_lower_mask_we = addr_hit[5] && reg_we;
assign masked_out_lower_mask_wd = reg_wdata[31:16];
assign masked_out_upper_data_we = addr_hit[6] && reg_we;
assign masked_out_upper_data_wd = reg_wdata[15:0];
assign masked_out_upper_data_re = addr_hit[6] && reg_re;
assign masked_out_upper_mask_we = addr_hit[6] && reg_we;
assign masked_out_upper_mask_wd = reg_wdata[31:16];
assign direct_oe_we = addr_hit[7] && reg_we;
assign direct_oe_wd = reg_wdata[31:0];
assign direct_oe_re = addr_hit[7] && reg_re;
assign masked_oe_lower_data_we = addr_hit[8] && reg_we;
assign masked_oe_lower_data_wd = reg_wdata[15:0];
assign masked_oe_lower_data_re = addr_hit[8] && reg_re;
assign masked_oe_lower_mask_we = addr_hit[8] && reg_we;
assign masked_oe_lower_mask_wd = reg_wdata[31:16];
assign masked_oe_lower_mask_re = addr_hit[8] && reg_re;
assign masked_oe_upper_data_we = addr_hit[9] && reg_we;
assign masked_oe_upper_data_wd = reg_wdata[15:0];
assign masked_oe_upper_data_re = addr_hit[9] && reg_re;
assign masked_oe_upper_mask_we = addr_hit[9] && reg_we;
assign masked_oe_upper_mask_wd = reg_wdata[31:16];
assign masked_oe_upper_mask_re = addr_hit[9] && reg_re;
assign intr_ctrl_en_rising_we = addr_hit[10] && reg_we;
assign intr_ctrl_en_rising_wd = reg_wdata[31:0];
assign intr_ctrl_en_falling_we = addr_hit[11] && reg_we;
assign intr_ctrl_en_falling_wd = reg_wdata[31:0];
assign intr_ctrl_en_lvlhigh_we = addr_hit[12] && reg_we;
assign intr_ctrl_en_lvlhigh_wd = reg_wdata[31:0];
assign intr_ctrl_en_lvllow_we = addr_hit[13] && reg_we;
assign intr_ctrl_en_lvllow_wd = reg_wdata[31:0];
assign ctrl_en_input_filter_we = addr_hit[14] && reg_we;
assign ctrl_en_input_filter_wd = reg_wdata[31:0];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[31:0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[31:0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[31:0] = data_in_qs;
end
addr_hit[4]: begin
reg_rdata_next[31:0] = direct_out_qs;
end
addr_hit[5]: begin
reg_rdata_next[15:0] = masked_out_lower_data_qs;
reg_rdata_next[31:16] = '0;
end
addr_hit[6]: begin
reg_rdata_next[15:0] = masked_out_upper_data_qs;
reg_rdata_next[31:16] = '0;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = direct_oe_qs;
end
addr_hit[8]: begin
reg_rdata_next[15:0] = masked_oe_lower_data_qs;
reg_rdata_next[31:16] = masked_oe_lower_mask_qs;
end
addr_hit[9]: begin
reg_rdata_next[15:0] = masked_oe_upper_data_qs;
reg_rdata_next[31:16] = masked_oe_upper_mask_qs;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = intr_ctrl_en_rising_qs;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = intr_ctrl_en_falling_qs;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = intr_ctrl_en_lvlhigh_qs;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = intr_ctrl_en_lvllow_qs;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = ctrl_en_input_filter_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
`ASSERT(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0, clk_i, !rst_ni)
endmodule