blob: d2b56f875eba6361d825739c9183a345ee8f0b8f [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
// Onehot checker.
//
// This module checks whether the input vector oh_i is onehot0 and generates an error if not.
//
// Optionally, two additional checks can be activated:
//
// 1) EnableCheck: this check performs an OR reduction of the onehot vector, and compares
// the result with en_i. If there is a mismatch, an error is generated.
// 2) AddrCheck: this checks whether the onehot bit is in the correct position.
// It requires an additional address addr_i to be supplied to the module.
//
// All checks make use of an explicit binary tree implementation in order to minimize the delay.
//
`include "prim_assert.sv"
module prim_onehot_check #(
parameter int unsigned AddrWidth = 5,
// The onehot width can be <= 2**AddrWidth and does not have to be a power of two.
parameter int unsigned OneHotWidth = 2**AddrWidth,
// If set to 0, the addr_i input will not be used for the check and can be tied off.
parameter bit AddrCheck = 1,
// If set to 0, the en_i value will not be used for the check and can be tied off.
parameter bit EnableCheck = 1,
// If set to 1, the oh_i vector must always be one hot if en_i is set to 1.
// If set to 0, the oh_i vector may be 0 if en_i is set to 1 (useful when oh_i can be masked).
parameter bit StrictCheck = 1,
// This should only be disabled in special circumstances, for example
// in non-comportable IPs where an error does not trigger an alert.
parameter bit EnableAlertTriggerSVA = 1
) (
// The module is combinational - the clock and reset are only used for assertions.
input clk_i,
input rst_ni,
input logic [OneHotWidth-1:0] oh_i,
input logic [AddrWidth-1:0] addr_i,
input logic en_i,
output logic err_o
);
///////////////////////
// Binary tree logic //
///////////////////////
`ASSERT_INIT(NumSources_A, OneHotWidth >= 1)
`ASSERT_INIT(AddrWidth_A, AddrWidth >= 1)
`ASSERT_INIT(AddrRange_A, OneHotWidth <= 2**AddrWidth)
`ASSERT_INIT(AddrImpliesEnable_A, AddrCheck && EnableCheck || !AddrCheck)
// Align to powers of 2 for simplicity.
// A full binary tree with N levels has 2**N + 2**N-1 nodes.
localparam int NumLevels = AddrWidth;
logic [2**(NumLevels+1)-2:0] or_tree;
logic [2**(NumLevels+1)-2:0] and_tree; // Used for the address check
logic [2**(NumLevels+1)-2:0] err_tree; // Used for the enable check
for (genvar level = 0; level < NumLevels+1; level++) begin : gen_tree
//
// level+1 C0 C1 <- "Base1" points to the first node on "level+1",
// \ / these nodes are the children of the nodes one level below
// level Pa <- "Base0", points to the first node on "level",
// these nodes are the parents of the nodes one level above
//
// hence we have the following indices for the paPa, C0, C1 nodes:
// Pa = 2**level - 1 + offset = Base0 + offset
// C0 = 2**(level+1) - 1 + 2*offset = Base1 + 2*offset
// C1 = 2**(level+1) - 1 + 2*offset + 1 = Base1 + 2*offset + 1
//
localparam int Base0 = (2**level)-1;
localparam int Base1 = (2**(level+1))-1;
for (genvar offset = 0; offset < 2**level; offset++) begin : gen_level
localparam int Pa = Base0 + offset;
localparam int C0 = Base1 + 2*offset;
localparam int C1 = Base1 + 2*offset + 1;
// This assigns the input values, their corresponding IDs and valid signals to the tree leafs.
if (level == NumLevels) begin : gen_leafs
if (offset < OneHotWidth) begin : gen_assign
assign or_tree[Pa] = oh_i[offset];
assign and_tree[Pa] = oh_i[offset];
end else begin : gen_tie_off
assign or_tree[Pa] = 1'b0;
assign and_tree[Pa] = 1'b0;
end
assign err_tree[Pa] = 1'b0;
// This creates the node assignments.
end else begin : gen_nodes
assign or_tree[Pa] = or_tree[C0] || or_tree[C1];
assign and_tree[Pa] = (!addr_i[AddrWidth-1-level] && and_tree[C0]) ||
(addr_i[AddrWidth-1-level] && and_tree[C1]);
assign err_tree[Pa] = (or_tree[C0] && or_tree[C1]) || err_tree[C0] || err_tree[C1];
end
end : gen_level
end : gen_tree
///////////////////
// Onehot Checks //
///////////////////
logic enable_err, addr_err, oh0_err;
assign err_o = oh0_err || enable_err || addr_err;
// Check that no more than 1 bit is set in the vector.
assign oh0_err = err_tree[0];
`ASSERT(Onehot0Check_A, !$onehot0(oh_i) |-> err_o)
// Check that en_i agrees with (|oh_i).
// Note: if StrictCheck 0, the oh_i vector may be all-zero if en_i == 1 (but not vice versa).
if (EnableCheck) begin : gen_enable_check
if (StrictCheck) begin : gen_strict
assign enable_err = or_tree[0] ^ en_i;
`ASSERT(EnableCheck_A, (|oh_i) != en_i |-> err_o)
end else begin : gen_not_strict
assign enable_err = !en_i && or_tree[0];
`ASSERT(EnableCheck_A, !en_i && (|oh_i) |-> err_o)
end
end else begin : gen_no_enable_check
logic unused_or_tree;
assign unused_or_tree = ^or_tree;
assign enable_err = 1'b0;
end
// Check that the set bit is actually in the correct position.
if (AddrCheck) begin : gen_addr_check_strict
assign addr_err = or_tree[0] ^ and_tree[0];
`ASSERT(AddrCheck_A, oh_i[addr_i] != (|oh_i) |-> err_o)
end else begin : gen_no_addr_check_strict
logic unused_and_tree;
assign unused_and_tree = ^and_tree;
assign addr_err = 1'b0;
end
// This logic that will be assign to one, when user adds macro
// ASSERT_PRIM_ONEHOT_ERROR_TRIGGER_ALERT to check the error with alert, in case that
// prim_onehot_check is used in design without adding this assertion check.
`ifdef INC_ASSERT
`ifndef PRIM_DEFAULT_IMPL
`define PRIM_DEFAULT_IMPL prim_pkg::ImplGeneric
`endif
parameter prim_pkg::impl_e Impl = `PRIM_DEFAULT_IMPL;
logic unused_assert_connected;
// TODO(#13337): only check generic for now. The path of this prim in other Impl may differ
if (Impl == prim_pkg::ImplGeneric) begin : gen_generic
`ASSERT_INIT_NET(AssertConnected_A, unused_assert_connected === 1'b1 || !EnableAlertTriggerSVA)
end
`endif
endmodule : prim_onehot_check