blob: 71b7af52fbc3de78d83a5c1288bfe4b69cc58f7a [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
class chip_env_cfg #(type RAL_T = chip_ral_pkg::chip_reg_block) extends cip_base_env_cfg #(
.RAL_T(RAL_T)
);
// Testbench settings
bit en_uart_logger;
uart_agent_pkg::baud_rate_e uart_baud_rate = uart_agent_pkg::BaudRate1Mbps;
bit use_gpio_for_sw_test_status;
// Write logs from sw test to separate log file as well, in addition to the simulator log file.
bit write_sw_logs_to_file = 1'b1;
// use spi or backdoor to load bootstrap
bit use_spi_load_bootstrap = 0;
// chip top interfaces
virtual chip_if chip_vif;
// Indicates which clock source to use for chip simulations.
chip_clock_source_e chip_clock_source;
// Indicates which JTAG to mux on the pads, if any
chip_jtag_tap_e select_jtag = JtagTapNone;
// Memory backdoor util instances for all memory instances in the chip.
mem_bkdr_util mem_bkdr_util_h[chip_mem_e];
// Creator SW config region in OTP that holds the AST config data. Randomized for open source.
//
// These are written via backdoor to the OTP region that starts at
// otp_ctrl_reg_pkg::CreatorSwCfgAstCfgOffset. SW based tests (via test ROM or the production
// ROM) will read out from this OTP region and write blindly to AST at the start. Non-SW based
// tests will do the same, prior to the test starting, see
// chip_stub_cpu_base_vseq::dut_init().
//
// In closed source, tests can modify this data directly in the extended sequence's dut_init(),
// before invoking super.dut_init(), or any other suitable place.
rand uint creator_sw_cfg_ast_cfg_data[ast_pkg::AstRegsNum];
// A knob that controls whether the AST initialization is done, enabled by default.
// Can be updated with plusarg.
bit do_creator_sw_cfg_ast_cfg = 1;
// sw related
// In OpenTitan, the same SW test image can be built for DV, Verilator and FPGA. SW build for
// other platforms can be run on DV as well. We allow that by specifying the SW build device.
string sw_build_device = "sim_dv";
// Types of SW images used in the test.
//
// Set via plusarg. This is the basename of the SW image. If the SW image is not pre-built
// (e.g., generated with Bazel), then the ~sw_build_device~ is suffixed to the basename to
// pick the correct image. The following files (extensions) with this basename are expected
// to exist there:
// - .elf: embedded executable
// - .32.vmem: mem image with 32-bit word size (for boot ROM)
// - .64.vmem: mem image with 64-bit word size (for sw_test / flash load)
// - .rodata.txt: dump of RO sections of the SW
// - .logs.txt: dump of SW logs
//
// The ~resolve_sw_image_paths()~ function does the job of suffixing this path with
// ~sw_build_device~.
string sw_images[sw_type_e];
string sw_image_flags[sw_type_e][$];
// Maintain a list of generated OTP images.
otp_type_e use_otp_image = OtpTypeLcStRma;
string otp_images[otp_type_e];
uint sw_test_timeout_ns = 12_000_000; // 12ms
sw_logger_vif sw_logger_vif;
sw_test_status_vif sw_test_status_vif;
ast_supply_vif ast_supply_vif;
ast_ext_clk_vif ast_ext_clk_vif;
// Number of RAM tiles for each RAM instance.
uint num_ram_main_tiles;
uint num_ram_ret_tiles;
uint num_otbn_dmem_tiles;
// ext component cfgs
rand uart_agent_cfg m_uart_agent_cfgs[NUM_UARTS];
rand spi_agent_cfg m_spi_device_agent_cfgs[NUM_SPI_HOSTS];
rand jtag_riscv_agent_cfg m_jtag_riscv_agent_cfg;
rand jtag_agent_cfg m_jtag_agent_cfg;
rand spi_agent_cfg m_spi_host_agent_cfg;
pwm_monitor_cfg m_pwm_monitor_cfg[NUM_PWM_CHANNELS];
rand i2c_agent_cfg m_i2c_agent_cfgs[NUM_I2CS];
rand pattgen_agent_cfg m_pattgen_agent_cfg;
// JTAG DMI register model
rand jtag_dmi_reg_block jtag_dmi_ral;
// A constant that can be referenced from anywhere.
string rv_dm_mem_ral_name = "rv_dm_debug_mem_reg_block";
parameter uint RV_DM_JTAG_IDCODE = `BUILD_SEED;
// Design uses 5 bits for IR.
parameter uint JTAG_IR_LEN = 5;
// The JTAG RV debugger model.
jtag_rv_debugger debugger;
// NOTE: The clk_freq_mhz variable created in the base class was meant to be used by clk_rst_vif
// interface that is passed by default by the testbench (retrieved by dv_base_env class). It was
// meant for a CIP-compliant testbench to drive the clock and reset to the DUT. The chip level
// testbench reuses the CIP framework, but is not exactly CIP-compliant. It uses chip_vif.por_n_if
// to drive the reset and chip_vif.ext_clk_if to drive the external clock, only if external clock
// source is required for the test. The clk_rst_vif is a passive interface which monitors them.
constraint clk_freq_mhz_c {
clk_freq_mhz inside {ChipClockSourceExternal48Mhz, ChipClockSourceExternal96Mhz};
foreach (clk_freqs_mhz[i]) clk_freqs_mhz[i] == clk_freq_mhz;
}
`uvm_object_new
`uvm_object_utils_begin(chip_env_cfg)
`uvm_field_object(m_jtag_riscv_agent_cfg, UVM_DEFAULT)
`uvm_field_object(m_spi_host_agent_cfg, UVM_DEFAULT)
`uvm_field_object(jtag_dmi_ral, UVM_DEFAULT)
`uvm_field_object(debugger, UVM_DEFAULT)
`uvm_object_utils_end
virtual function void initialize(bit [TL_AW-1:0] csr_base_addr = '1);
has_devmode = 0;
list_of_alerts = chip_common_pkg::LIST_OF_ALERTS;
is_chip = 1;
// No need to cover all kinds of interity errors as they are tested in block-level.
en_tl_intg_err_cov = 0;
// Alert_esc_agent does not support ping timeout check in chip-level.
// User can read `loc_alert_cause` to check ping timeout.
en_scb_ping_chk = 0;
super.initialize(csr_base_addr);
`uvm_info(`gfn, $sformatf("ral_model_names: %0p", ral_model_names), UVM_LOW)
// Set the a_source width limitation for the TL agent hooked up to the CPU cored port.
// TODO: use a parameter (or some better way)?
m_tl_agent_cfg.valid_a_source_width = 6;
// create uart agent config obj
foreach (m_uart_agent_cfgs[i]) begin
m_uart_agent_cfgs[i] = uart_agent_cfg::type_id::create($sformatf("m_uart_agent_cfg%0d", i));
// Do not create uart agent fcov in chip level test.
m_uart_agent_cfgs[i].en_cov = 0;
end
// create spi device agent config obj
foreach (m_spi_device_agent_cfgs[i]) begin
m_spi_device_agent_cfgs[i] =
spi_agent_cfg::type_id::create($sformatf("m_spi_device_agent_cfg%0d", i));
end
// create i2c agent config obj
foreach (m_i2c_agent_cfgs[i]) begin
m_i2c_agent_cfgs[i] = i2c_agent_cfg::type_id::create($sformatf("m_i2c_agent_cfg%0d", i));
end
// create pattgen agent config obj
m_pattgen_agent_cfg = pattgen_agent_cfg::type_id::create("m_pattgen_agent_cfg");
m_pattgen_agent_cfg.if_mode = Device;
// create jtag agent config obj
m_jtag_riscv_agent_cfg = jtag_riscv_agent_cfg::type_id::create("m_jtag_riscv_agent_cfg");
m_jtag_riscv_agent_cfg.use_jtag_dmi = use_jtag_dmi;
if (use_jtag_dmi == 1) begin
// Both, the regs only supports 1 outstanding.
m_tl_agent_cfgs[RAL_T::type_name].max_outstanding_req = 1;
m_jtag_agent_cfg = jtag_agent_cfg::type_id::create("m_jtag_agent_cfg");
m_jtag_agent_cfg.if_mode = dv_utils_pkg::Host;
m_jtag_agent_cfg.is_active = 1'b1;
m_jtag_agent_cfg.ir_len = JTAG_IR_LEN;
// Set the 'correct' IDCODE register value to the JTAG DTM RAL.
m_jtag_agent_cfg.jtag_dtm_ral.idcode.set_reset(RV_DM_JTAG_IDCODE);
m_jtag_riscv_agent_cfg.m_jtag_agent_cfg = m_jtag_agent_cfg;
end
// create spi agent config obj
m_spi_host_agent_cfg = spi_agent_cfg::type_id::create("m_spi_host_agent_cfg");
// create pwm monitor config obj
foreach (m_pwm_monitor_cfg[i]) begin
m_pwm_monitor_cfg[i] = pwm_monitor_cfg::type_id::create($sformatf("m_pwm_monitor%0d_cfg", i));
m_pwm_monitor_cfg[i].is_active = 0;
end
// By default, assume these OTP image paths.
// A customized OTP image may be specified loaded via the `sw_images` plusarg.
otp_images[OtpTypeLcStRaw] = "otp_ctrl_img_raw.vmem";
otp_images[OtpTypeLcStDev] = "otp_ctrl_img_dev.vmem";
otp_images[OtpTypeLcStProd] = "otp_ctrl_img_prod.vmem";
otp_images[OtpTypeLcStRma] = "otp_ctrl_img_rma.vmem";
otp_images[OtpTypeLcStTestUnlocked0] = "otp_ctrl_img_test_unlocked0.vmem";
otp_images[OtpTypeLcStTestUnlocked1] = "otp_ctrl_img_test_unlocked1.vmem";
otp_images[OtpTypeLcStTestUnlocked2] = "otp_ctrl_img_test_unlocked2.vmem";
otp_images[OtpTypeLcStTestLocked0] = "otp_ctrl_img_test_locked0.vmem";
otp_images[OtpTypeLcStTestLocked1] = "otp_ctrl_img_test_locked1.vmem";
otp_images[OtpTypeCustom] = "";
`DV_CHECK_LE_FATAL(num_ram_main_tiles, 16)
`DV_CHECK_LE_FATAL(num_ram_ret_tiles, 16)
`DV_CHECK_LE_FATAL(num_otbn_dmem_tiles, 16)
// ral_model_names = chip_reg_block // 1 entry
if (use_jtag_dmi == 1) begin
jtag_dmi_ral = create_jtag_dmi_reg_block(m_jtag_riscv_agent_cfg.m_jtag_agent_cfg);
// Fix the reset values of these fields based on our design.
`uvm_info(`gfn, "Fixing reset values in jtag_dmi_ral", UVM_LOW)
jtag_dmi_ral.hartinfo.dataaddr.set_reset(dm::DataAddr);
jtag_dmi_ral.hartinfo.datasize.set_reset(dm::DataCount);
jtag_dmi_ral.hartinfo.dataaccess.set_reset(1); // TODO: verify this!
jtag_dmi_ral.hartinfo.nscratch.set_reset(2); // TODO: verify this!
jtag_dmi_ral.abstractcs.datacount.set_reset(dm::DataCount);
jtag_dmi_ral.abstractcs.progbufsize.set_reset(dm::ProgBufSize);
jtag_dmi_ral.dmstatus.authenticated.set_reset(1); // No authentication performed.
jtag_dmi_ral.sbcs.sbaccess32.set_reset(1);
jtag_dmi_ral.sbcs.sbaccess16.set_reset(1);
jtag_dmi_ral.sbcs.sbaccess8.set_reset(1);
jtag_dmi_ral.sbcs.sbasize.set_reset(32);
apply_jtag_dmi_ral_csr_excl();
end
// Create the JTAG RV debugger instance.
debugger = jtag_rv_debugger::type_id::create("debugger");
debugger.set_cfg(m_jtag_agent_cfg);
debugger.set_ral(jtag_dmi_ral);
debugger.num_harts = rv_dm_reg_pkg::NrHarts;
debugger.num_triggers = 4; // TODO: wire this from `top_earlgrey_pkg`.
// This TL agent is used in stub_cpu mode and connected with ibex data port.
// It can have up to 3 outstanding items, because req/rsp fifo can each hold 1 and
// there can also be a pending response in the peripheral.
// However, the actual ibex data port can only support 1 outstanding item.
m_tl_agent_cfg.max_outstanding_req = 3;
endfunction
// Disable functional coverage of comportable IP-specific specialized registers.
// Chip level testbench does not sample these coverpoints.
protected virtual function void pre_build_ral_settings(dv_base_reg_block ral);
super.pre_build_ral_settings(ral);
ral.set_en_dv_reg_cov(0);
endfunction
// Apply RAL fixes before it is locked.
protected virtual function void post_build_ral_settings(dv_base_reg_block ral);
RAL_T chip_ral;
uvm_reg regs[$];
super.post_build_ral_settings(ral);
if (!$cast(chip_ral, ral)) return;
// Out of reset, the link is in disconnected state.
chip_ral.usbdev.intr_state.disconnected.set_reset(1'b1);
chip_ral.rv_dm_mem.get_registers(regs);
foreach (regs[i]) begin
regs[i].clear_hdl_path("ALL");
end
endfunction
// Apply RAL exclusions externally since the RAL itself is considered generic. The IP it is used
// in constrains the RAL with its implementation details.
virtual function void apply_jtag_dmi_ral_csr_excl();
csr_excl_item csr_excl = jtag_dmi_ral.get_excl_item();
// We leave the DM 'activated' for CSR tests to reduce noise. We exclude this from further
// writes to avoid side-effects.
csr_excl.add_excl(jtag_dmi_ral.dmcontrol.get_full_name(), CsrExclWrite, CsrNonInitTests);
// This field is tied off to 0 due to no hart array mask being implemented.
// TODO: Change these to access policy.
csr_excl.add_excl(jtag_dmi_ral.dmcontrol.hasel.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.dmcontrol.hartreset.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
// Selecting a different hart in the middle of random read/writes impact other registers.
csr_excl.add_excl(jtag_dmi_ral.dmcontrol.hartsello.get_full_name(),
CsrExclWrite, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.dmcontrol.hartselhi.get_full_name(),
CsrExclWrite, CsrNonInitTests);
// Writes to other CSRs may affect dmstatus, even the HW reset test.
csr_excl.add_excl(jtag_dmi_ral.dmstatus.get_full_name(), CsrExclCheck, CsrAllTests);
// We have only upto dm::DataCount number of these registers available.
foreach (jtag_dmi_ral.abstractdata[i]) begin
if (i >= dm::DataCount) begin
csr_excl.add_excl(jtag_dmi_ral.abstractdata[i].get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
end
end
// We have only upto dm::ProgBufSize number of these registers available.
foreach (jtag_dmi_ral.progbuf[i]) begin
if (i >= dm::ProgBufSize) begin
csr_excl.add_excl(jtag_dmi_ral.progbuf[i].get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
end
end
// These prevent an SBA access from being triggered, which have other side effects.
csr_excl.add_excl(jtag_dmi_ral.sbcs.sbreadondata.get_full_name(),
CsrExclWrite, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.sbcs.sbreadonaddr.get_full_name(),
CsrExclWrite, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.sbdata0.get_full_name(),
CsrExclWrite, CsrNonInitTests);
// TODO: This should be an access policy change.
csr_excl.add_excl(jtag_dmi_ral.sbcs.sbaccess.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
// These SBA registers are not implemented, or unsupported due to 32-bit system.
csr_excl.add_excl(jtag_dmi_ral.sbaddress1.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.sbaddress2.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.sbaddress3.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.sbdata2.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
csr_excl.add_excl(jtag_dmi_ral.sbdata3.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
// Abstractcs cmderr bits are updated by RTL.
csr_excl.add_excl(jtag_dmi_ral.abstractcs.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
// Not all bits of abstractauto are set - and its also impacted by writes to other CSRs.
csr_excl.add_excl(jtag_dmi_ral.abstractauto.get_full_name(),
CsrExclWriteCheck, CsrNonInitTests);
endfunction
// Parse a space-separated list of sw_images supplied as a string.
//
// The typical usecase is the list of SW images used by the test supplied as a plusarg. The
// SW images are defined by their filename. Each SW image can have additional metadata
// specified using ":" as delimiters. Examples:
// +sw_images="test_binary_1:1 test_binary_2:0"
// +sw_images="foo:0:flag1 bar:1:flag1:flag2".
//
// The index (optional) is mapped to the type of SW image (enumerated in sw_type_e). If index is
// not specified, then `SwTypeTestSlotA` is assumed. Flags (optional) are arbitrary strings
// attached to the SW image. They can be used to treat the SW image in a specific way. The flag
// "signed" for example, is used to set the SW image extension correctly. The flag "test_in_rom"
// is used to indicate a test runs directly out of ROM instead of flash.
virtual function void parse_sw_images_string(string sw_images_string);
string sw_images_split[$];
// Split sw_images with space.
str_utils_pkg::str_split(sw_images_string, sw_images_split, ",");
`DV_CHECK_GT_FATAL(sw_images_split.size(), 0)
foreach (sw_images_split[i]) begin
sw_type_e sw_type;
string sw_image_fields[$];
// Split each entry with ':' into sw_image_fields.
str_utils_pkg::str_split(sw_images_split[i], sw_image_fields, ":");
`DV_CHECK_GT_FATAL(sw_image_fields.size(), 0)
if (sw_image_fields.size() == 1) begin
sw_images[SwTypeTestSlotA] = sw_image_fields[0];
continue;
end
// There are at least 2 fields - first is the filename, second is the index (SW type).
sw_type = sw_type_e'(sw_image_fields[1].atoi());
sw_images[sw_type] = sw_image_fields[0];
if (sw_image_fields.size() > 2) begin
sw_image_flags[sw_type] = sw_image_fields[2:$];
end
end
resolve_sw_image_paths();
endfunction
// Finalize the SW image paths, once all SW image settings are done.
virtual function void resolve_sw_image_paths();
foreach (sw_images[i]) begin
if ("prebuilt" inside {sw_image_flags[i]}) begin
sw_images[i] = $sformatf("%0s", sw_images[i]);
end else begin
if (i == SwTypeRom) begin
// If Rom type AND test_in_rom, append suffix to the image name.
if ("test_in_rom" inside {sw_image_flags[i]}) begin
sw_images[i] = $sformatf("%0s_rom_prog_%0s", sw_images[i], sw_build_device);
// If Rom type but not test_in_rom, no need to tweak name further.
end else begin
sw_images[i] = $sformatf("%0s_%0s", sw_images[i], sw_build_device);
end
end else if (i inside {SwTypeTestSlotA, SwTypeTestSlotB}) begin
// If Test type (e.g., opentitan_functest) and flash image was
// generated by the `opentitan_functest` Bazel macro itself, then we
// need to tweak the name, as the flash binary target has the `_prog`
// suffix attached (to differentiate between the `sh_test` target
// also generated by the same Bazel macro.
if ("ot_flash_binary" inside {sw_image_flags[i]}) begin
sw_images[i] = $sformatf("%0s_%0s", sw_images[i], sw_build_device);
// If Test type (e.g., opentitan_functest) and flash image was by a
// `opentitan_flash_binary` macro, then no need to tweak the name.
end else begin
sw_images[i] = $sformatf("%0s_prog_%0s", sw_images[i], sw_build_device);
end
// A flash image could be signed, and if it is, Bazel will attach a
// suffix to the image name.
if ("signed" inside {sw_image_flags[i]}) begin
// Options match DEFAULT_SIGNING_KEYS in `rules/opentitan.bzl`.
if ("fake_dev_key_0" inside {sw_image_flags[i]}) begin
sw_images[i] = $sformatf("%0s.fake_dev_key_0.signed", sw_images[i]);
end else if ("fake_prod_key_0" inside {sw_image_flags[i]}) begin
sw_images[i] = $sformatf("%0s.fake_prod_key_0.signed", sw_images[i]);
end else begin
// We default to "fake_test_key_0" if no key name is provided in the
// SW image tags (or if the key name provided is "fake_test_key_0"),
// as this works in the RMA LC state, which is the default OTP image.
sw_images[i] = $sformatf("%0s.fake_test_key_0.signed", sw_images[i]);
end
end
end else if (i == SwTypeOtp) begin
otp_images[OtpTypeCustom] = $sformatf("%0s.24.vmem", sw_images[i]);
end else if (i == SwTypeDebug) begin
sw_images[i] = $sformatf("%0s_%0s", sw_images[i], sw_build_device);
end
end
end
endfunction
// Returns the chip memory instance to which the address belongs.
virtual function bit get_mem_from_addr(input uint addr, output chip_mem_e mem);
chip_mem_e mem_iter = mem_iter.first();
do begin
if (mem_bkdr_util_h[mem_iter] != null) begin
if (mem_bkdr_util_h[mem_iter].is_valid_addr(addr)) begin
mem = mem_iter;
return 1;
end
end
mem_iter = mem_iter.next();
end while (mem_iter != mem_iter.first());
return 0;
endfunction
endclass