blob: 5d8a3b0773feb633f67b378eebaee3619a423164 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/lib/dif/dif_plic.h"
#include "sw/device/lib/arch/device.h"
#include "sw/device/lib/base/log.h"
#include "sw/device/lib/base/mmio.h"
#include "sw/device/lib/dif/dif_uart.h"
#include "sw/device/lib/handler.h"
#include "sw/device/lib/irq.h"
#include "sw/device/lib/runtime/hart.h"
#include "sw/device/lib/testing/test_main.h"
#include "sw/device/lib/testing/test_status.h"
#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h" // Generated.
#define PLIC_TARGET kTopEarlgreyPlicTargetIbex0
#define kDifPlicMinPriority 0u
static dif_plic_t plic0;
static dif_uart_t uart0;
// These flags are used in the test routine to verify that a corresponding
// interrupt has elapsed, and has been serviced. These are declared as volatile
// since they are referenced in the ISR routine as well as in the main program
// flow.
static volatile bool uart_rx_overflow_handled;
static volatile bool uart_tx_empty_handled;
static volatile bool uart_handled_more_than_once;
#define LOG_FATAL_AND_ABORT(...) \
do { \
LOG_FATAL(__VA_ARGS__); \
test_status_set(kTestStatusFailed); \
abort(); \
} while (false)
/**
* UART interrupt handler
*
* Services UART interrupts, sets the appropriate flags that are used to
* determine success or failure of the test.
*/
static void handle_uart_isr(const dif_plic_irq_id_t interrupt_id) {
const dif_uart_t *uart = &uart0;
dif_uart_interrupt_t uart_irq;
switch (interrupt_id) {
case kTopEarlgreyPlicIrqIdUartRxOverflow:
uart_irq = kDifUartInterruptRxOverflow;
// It is an error if this IRQ is asserted more than once.
if (uart_rx_overflow_handled) {
uart_handled_more_than_once = true;
} else {
uart_rx_overflow_handled = true;
}
break;
case kTopEarlgreyPlicIrqIdUartTxEmpty:
uart_irq = kDifUartInterruptTxEmpty;
// It is an error if this IRQ is asserted more than once.
if (uart_tx_empty_handled) {
uart_handled_more_than_once = true;
} else {
uart_tx_empty_handled = true;
}
break;
default:
LOG_FATAL_AND_ABORT("ISR is not implemented!");
}
if (dif_uart_irq_state_clear(uart, uart_irq) != kDifUartOk) {
LOG_FATAL_AND_ABORT("ISR failed to clear IRQ!");
}
}
/**
* External interrupt handler
*
* Handles all peripheral interrupts on Ibex. PLIC asserts an external interrupt
* line to the CPU, which results in a call to this handler. This handler
* overrides the default implementation, and prototype for this handler must
* include appropriate attributes.
*/
void handler_irq_external(void) {
// Claim the IRQ by reading the Ibex specific CC register.
dif_plic_irq_id_t interrupt_id;
if (dif_plic_irq_claim(&plic0, PLIC_TARGET, &interrupt_id) != kDifPlicOk) {
LOG_FATAL_AND_ABORT("ISR is not implemented!");
}
// Check if the interrupted peripheral is UART.
top_earlgrey_plic_peripheral_t peripheral_id =
top_earlgrey_plic_interrupt_for_peripheral[interrupt_id];
if (peripheral_id != kTopEarlgreyPlicPeripheralUart) {
LOG_FATAL_AND_ABORT("ISR interrupted peripheral is not UART!");
}
handle_uart_isr(interrupt_id);
// Complete the IRQ by writing the IRQ source to the Ibex specific CC
// register.
if (dif_plic_irq_complete(&plic0, PLIC_TARGET, &interrupt_id) != kDifPlicOk) {
LOG_FATAL_AND_ABORT("Unable to complete the IRQ request!");
}
}
static void uart_initialise(mmio_region_t base_addr, dif_uart_t *uart) {
dif_uart_config_t config = {
.baudrate = kUartBaudrate,
.clk_freq_hz = kClockFreqHz,
.parity_enable = kDifUartDisable,
.parity = kDifUartParityEven,
};
// No debug output in case of UART initialisation failure.
if (dif_uart_init(base_addr, &config, uart) != kDifUartConfigOk) {
LOG_FATAL_AND_ABORT("UART init failed!");
}
}
static void plic_initialise(mmio_region_t base_addr, dif_plic_t *plic) {
if (dif_plic_init(base_addr, plic) != kDifPlicOk) {
LOG_FATAL_AND_ABORT("PLIC init failed!");
}
}
/**
* Configures all the relevant interrupts in UART.
*/
static bool uart_configure_irqs(dif_uart_t *uart) {
if (dif_uart_irq_enable(&uart0, kDifUartInterruptRxOverflow,
kDifUartEnable) != kDifUartOk) {
LOG_ERROR("RX overflow IRQ enable failed!");
return false;
}
if (dif_uart_irq_enable(&uart0, kDifUartInterruptTxEmpty, kDifUartEnable) !=
kDifUartOk) {
LOG_ERROR("TX empty IRQ enable failed!");
return false;
}
return true;
}
/**
* Configures all the relevant interrupts in PLIC.
*/
static bool plic_configure_irqs(dif_plic_t *plic) {
// Set IRQ triggers to be level triggered
if (dif_plic_irq_trigger_type_set(plic, kTopEarlgreyPlicIrqIdUartRxOverflow,
kDifPlicDisable) != kDifPlicOk) {
LOG_ERROR("RX overflow trigger type set failed!");
return false;
}
if (dif_plic_irq_trigger_type_set(plic, kTopEarlgreyPlicIrqIdUartTxEmpty,
kDifPlicDisable) != kDifPlicOk) {
LOG_ERROR("TX empty trigger type set failed!");
return false;
}
// Set IRQ priorities to MAX
if (dif_plic_irq_priority_set(plic, kTopEarlgreyPlicIrqIdUartRxOverflow,
kDifPlicMaxPriority) != kDifPlicOk) {
LOG_ERROR("priority set for RX overflow failed!");
return false;
}
if (dif_plic_irq_priority_set(plic, kTopEarlgreyPlicIrqIdUartTxEmpty,
kDifPlicMaxPriority) != kDifPlicOk) {
LOG_ERROR("priority set for TX empty failed!");
return false;
}
// Set Ibex IRQ priority threshold level
if (dif_plic_target_threshold_set(&plic0, PLIC_TARGET, kDifPlicMinPriority) !=
kDifPlicOk) {
LOG_ERROR("threshold set failed!");
return false;
}
// Enable IRQs in PLIC
if (dif_plic_irq_enable_set(plic, kTopEarlgreyPlicIrqIdUartRxOverflow,
PLIC_TARGET, kDifPlicEnable) != kDifPlicOk) {
LOG_ERROR("interrupt Enable for RX overflow failed!");
return false;
}
if (dif_plic_irq_enable_set(plic, kTopEarlgreyPlicIrqIdUartTxEmpty,
PLIC_TARGET, kDifPlicEnable) != kDifPlicOk) {
LOG_ERROR("interrupt Enable for TX empty failed!");
return false;
}
return true;
}
static bool execute_test(dif_uart_t *uart) {
// Initialize the global variables.
uart_rx_overflow_handled = false;
uart_tx_empty_handled = false;
uart_handled_more_than_once = false;
// Force UART RX overflow interrupt.
if (dif_uart_irq_force(uart, kDifUartInterruptRxOverflow) != kDifUartOk) {
LOG_ERROR("failed to force RX overflow IRQ!");
return false;
}
// Check if the IRQ has occured and has been handled appropriately.
if (!uart_rx_overflow_handled) {
usleep(10);
}
if (!uart_rx_overflow_handled) {
LOG_ERROR("RX overflow IRQ has not been handled!");
return false;
}
// Check that the IRQ has not been asserted more than once.
if (uart_handled_more_than_once) {
LOG_ERROR("RX overflow IRQ was asserted more than once!");
return false;
}
// Force UART TX empty interrupt.
if (dif_uart_irq_force(uart, kDifUartInterruptTxEmpty) != kDifUartOk) {
LOG_ERROR("failed to force TX empty IRQ!");
return false;
}
// Check if the IRQ has occured and has been handled appropriately.
if (!uart_tx_empty_handled) {
usleep(10);
}
if (!uart_tx_empty_handled) {
LOG_ERROR("TX empty IRQ has not been handled!");
return false;
}
// Check that the IRQ has not been asserted more than once.
if (uart_handled_more_than_once) {
LOG_ERROR("TX empty IRQ was asserted more than once!");
return false;
}
return true;
}
bool test_main(void) {
// Enable IRQs on Ibex
irq_global_ctrl(true);
irq_external_ctrl(true);
// No debug output in case of UART initialisation failure.
mmio_region_t uart_base_addr =
mmio_region_from_addr(TOP_EARLGREY_UART_BASE_ADDR);
uart_initialise(uart_base_addr, &uart0);
mmio_region_t plic_base_addr =
mmio_region_from_addr(TOP_EARLGREY_RV_PLIC_BASE_ADDR);
plic_initialise(plic_base_addr, &plic0);
if (!uart_configure_irqs(&uart0) || !plic_configure_irqs(&plic0)) {
return false;
}
return (execute_test(&uart0));
}