blob: 8e50a69cc20ebcacfd41771863c9256d3469d7d8 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module pwm_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output pwm_reg_pkg::pwm_reg2hw_t reg2hw, // Write
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import pwm_reg_pkg::* ;
localparam int AW = 7;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic regen_qs;
logic regen_wd;
logic regen_we;
logic [26:0] cfg_clk_div_qs;
logic [26:0] cfg_clk_div_wd;
logic cfg_clk_div_we;
logic [3:0] cfg_dc_resn_qs;
logic [3:0] cfg_dc_resn_wd;
logic cfg_dc_resn_we;
logic cfg_cntr_en_qs;
logic cfg_cntr_en_wd;
logic cfg_cntr_en_we;
logic pwm_en_en_0_qs;
logic pwm_en_en_0_wd;
logic pwm_en_en_0_we;
logic pwm_en_en_1_qs;
logic pwm_en_en_1_wd;
logic pwm_en_en_1_we;
logic pwm_en_en_2_qs;
logic pwm_en_en_2_wd;
logic pwm_en_en_2_we;
logic pwm_en_en_3_qs;
logic pwm_en_en_3_wd;
logic pwm_en_en_3_we;
logic pwm_en_en_4_qs;
logic pwm_en_en_4_wd;
logic pwm_en_en_4_we;
logic pwm_en_en_5_qs;
logic pwm_en_en_5_wd;
logic pwm_en_en_5_we;
logic invert_invert_0_qs;
logic invert_invert_0_wd;
logic invert_invert_0_we;
logic invert_invert_1_qs;
logic invert_invert_1_wd;
logic invert_invert_1_we;
logic invert_invert_2_qs;
logic invert_invert_2_wd;
logic invert_invert_2_we;
logic invert_invert_3_qs;
logic invert_invert_3_wd;
logic invert_invert_3_we;
logic invert_invert_4_qs;
logic invert_invert_4_wd;
logic invert_invert_4_we;
logic invert_invert_5_qs;
logic invert_invert_5_wd;
logic invert_invert_5_we;
logic [15:0] pwm_param_0_phase_delay_0_qs;
logic [15:0] pwm_param_0_phase_delay_0_wd;
logic pwm_param_0_phase_delay_0_we;
logic pwm_param_0_htbt_en_0_qs;
logic pwm_param_0_htbt_en_0_wd;
logic pwm_param_0_htbt_en_0_we;
logic pwm_param_0_blink_en_0_qs;
logic pwm_param_0_blink_en_0_wd;
logic pwm_param_0_blink_en_0_we;
logic [15:0] pwm_param_1_phase_delay_1_qs;
logic [15:0] pwm_param_1_phase_delay_1_wd;
logic pwm_param_1_phase_delay_1_we;
logic pwm_param_1_htbt_en_1_qs;
logic pwm_param_1_htbt_en_1_wd;
logic pwm_param_1_htbt_en_1_we;
logic pwm_param_1_blink_en_1_qs;
logic pwm_param_1_blink_en_1_wd;
logic pwm_param_1_blink_en_1_we;
logic [15:0] pwm_param_2_phase_delay_2_qs;
logic [15:0] pwm_param_2_phase_delay_2_wd;
logic pwm_param_2_phase_delay_2_we;
logic pwm_param_2_htbt_en_2_qs;
logic pwm_param_2_htbt_en_2_wd;
logic pwm_param_2_htbt_en_2_we;
logic pwm_param_2_blink_en_2_qs;
logic pwm_param_2_blink_en_2_wd;
logic pwm_param_2_blink_en_2_we;
logic [15:0] pwm_param_3_phase_delay_3_qs;
logic [15:0] pwm_param_3_phase_delay_3_wd;
logic pwm_param_3_phase_delay_3_we;
logic pwm_param_3_htbt_en_3_qs;
logic pwm_param_3_htbt_en_3_wd;
logic pwm_param_3_htbt_en_3_we;
logic pwm_param_3_blink_en_3_qs;
logic pwm_param_3_blink_en_3_wd;
logic pwm_param_3_blink_en_3_we;
logic [15:0] pwm_param_4_phase_delay_4_qs;
logic [15:0] pwm_param_4_phase_delay_4_wd;
logic pwm_param_4_phase_delay_4_we;
logic pwm_param_4_htbt_en_4_qs;
logic pwm_param_4_htbt_en_4_wd;
logic pwm_param_4_htbt_en_4_we;
logic pwm_param_4_blink_en_4_qs;
logic pwm_param_4_blink_en_4_wd;
logic pwm_param_4_blink_en_4_we;
logic [15:0] pwm_param_5_phase_delay_5_qs;
logic [15:0] pwm_param_5_phase_delay_5_wd;
logic pwm_param_5_phase_delay_5_we;
logic pwm_param_5_htbt_en_5_qs;
logic pwm_param_5_htbt_en_5_wd;
logic pwm_param_5_htbt_en_5_we;
logic pwm_param_5_blink_en_5_qs;
logic pwm_param_5_blink_en_5_wd;
logic pwm_param_5_blink_en_5_we;
logic [15:0] duty_cycle_0_a_0_qs;
logic [15:0] duty_cycle_0_a_0_wd;
logic duty_cycle_0_a_0_we;
logic [15:0] duty_cycle_0_b_0_qs;
logic [15:0] duty_cycle_0_b_0_wd;
logic duty_cycle_0_b_0_we;
logic [15:0] duty_cycle_1_a_1_qs;
logic [15:0] duty_cycle_1_a_1_wd;
logic duty_cycle_1_a_1_we;
logic [15:0] duty_cycle_1_b_1_qs;
logic [15:0] duty_cycle_1_b_1_wd;
logic duty_cycle_1_b_1_we;
logic [15:0] duty_cycle_2_a_2_qs;
logic [15:0] duty_cycle_2_a_2_wd;
logic duty_cycle_2_a_2_we;
logic [15:0] duty_cycle_2_b_2_qs;
logic [15:0] duty_cycle_2_b_2_wd;
logic duty_cycle_2_b_2_we;
logic [15:0] duty_cycle_3_a_3_qs;
logic [15:0] duty_cycle_3_a_3_wd;
logic duty_cycle_3_a_3_we;
logic [15:0] duty_cycle_3_b_3_qs;
logic [15:0] duty_cycle_3_b_3_wd;
logic duty_cycle_3_b_3_we;
logic [15:0] duty_cycle_4_a_4_qs;
logic [15:0] duty_cycle_4_a_4_wd;
logic duty_cycle_4_a_4_we;
logic [15:0] duty_cycle_4_b_4_qs;
logic [15:0] duty_cycle_4_b_4_wd;
logic duty_cycle_4_b_4_we;
logic [15:0] duty_cycle_5_a_5_qs;
logic [15:0] duty_cycle_5_a_5_wd;
logic duty_cycle_5_a_5_we;
logic [15:0] duty_cycle_5_b_5_qs;
logic [15:0] duty_cycle_5_b_5_wd;
logic duty_cycle_5_b_5_we;
logic [15:0] blink_param_0_x_0_qs;
logic [15:0] blink_param_0_x_0_wd;
logic blink_param_0_x_0_we;
logic [15:0] blink_param_0_y_0_qs;
logic [15:0] blink_param_0_y_0_wd;
logic blink_param_0_y_0_we;
logic [15:0] blink_param_1_x_1_qs;
logic [15:0] blink_param_1_x_1_wd;
logic blink_param_1_x_1_we;
logic [15:0] blink_param_1_y_1_qs;
logic [15:0] blink_param_1_y_1_wd;
logic blink_param_1_y_1_we;
logic [15:0] blink_param_2_x_2_qs;
logic [15:0] blink_param_2_x_2_wd;
logic blink_param_2_x_2_we;
logic [15:0] blink_param_2_y_2_qs;
logic [15:0] blink_param_2_y_2_wd;
logic blink_param_2_y_2_we;
logic [15:0] blink_param_3_x_3_qs;
logic [15:0] blink_param_3_x_3_wd;
logic blink_param_3_x_3_we;
logic [15:0] blink_param_3_y_3_qs;
logic [15:0] blink_param_3_y_3_wd;
logic blink_param_3_y_3_we;
logic [15:0] blink_param_4_x_4_qs;
logic [15:0] blink_param_4_x_4_wd;
logic blink_param_4_x_4_we;
logic [15:0] blink_param_4_y_4_qs;
logic [15:0] blink_param_4_y_4_wd;
logic blink_param_4_y_4_we;
logic [15:0] blink_param_5_x_5_qs;
logic [15:0] blink_param_5_x_5_wd;
logic blink_param_5_x_5_we;
logic [15:0] blink_param_5_y_5_qs;
logic [15:0] blink_param_5_y_5_wd;
logic blink_param_5_y_5_we;
// Register instances
// R[regen]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h1)
) u_regen (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (regen_we),
.wd (regen_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.regen.q ),
// to register interface (read)
.qs (regen_qs)
);
// R[cfg]: V(False)
// F[clk_div]: 26:0
prim_subreg #(
.DW (27),
.SWACCESS("RW"),
.RESVAL (27'h8000)
) u_cfg_clk_div (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (cfg_clk_div_we),
.wd (cfg_clk_div_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.clk_div.q ),
// to register interface (read)
.qs (cfg_clk_div_qs)
);
// F[dc_resn]: 30:27
prim_subreg #(
.DW (4),
.SWACCESS("RW"),
.RESVAL (4'h7)
) u_cfg_dc_resn (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (cfg_dc_resn_we),
.wd (cfg_dc_resn_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.dc_resn.q ),
// to register interface (read)
.qs (cfg_dc_resn_qs)
);
// F[cntr_en]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_cntr_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (cfg_cntr_en_we),
.wd (cfg_cntr_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.cntr_en.q ),
// to register interface (read)
.qs (cfg_cntr_en_qs)
);
// Subregister 0 of Multireg pwm_en
// R[pwm_en]: V(False)
// F[en_0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_en_en_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_en_en_0_we),
.wd (pwm_en_en_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_en[0].q ),
// to register interface (read)
.qs (pwm_en_en_0_qs)
);
// F[en_1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_en_en_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_en_en_1_we),
.wd (pwm_en_en_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_en[1].q ),
// to register interface (read)
.qs (pwm_en_en_1_qs)
);
// F[en_2]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_en_en_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_en_en_2_we),
.wd (pwm_en_en_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_en[2].q ),
// to register interface (read)
.qs (pwm_en_en_2_qs)
);
// F[en_3]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_en_en_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_en_en_3_we),
.wd (pwm_en_en_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_en[3].q ),
// to register interface (read)
.qs (pwm_en_en_3_qs)
);
// F[en_4]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_en_en_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_en_en_4_we),
.wd (pwm_en_en_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_en[4].q ),
// to register interface (read)
.qs (pwm_en_en_4_qs)
);
// F[en_5]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_en_en_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_en_en_5_we),
.wd (pwm_en_en_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_en[5].q ),
// to register interface (read)
.qs (pwm_en_en_5_qs)
);
// Subregister 0 of Multireg invert
// R[invert]: V(False)
// F[invert_0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_invert_invert_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (invert_invert_0_we),
.wd (invert_invert_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.invert[0].q ),
// to register interface (read)
.qs (invert_invert_0_qs)
);
// F[invert_1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_invert_invert_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (invert_invert_1_we),
.wd (invert_invert_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.invert[1].q ),
// to register interface (read)
.qs (invert_invert_1_qs)
);
// F[invert_2]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_invert_invert_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (invert_invert_2_we),
.wd (invert_invert_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.invert[2].q ),
// to register interface (read)
.qs (invert_invert_2_qs)
);
// F[invert_3]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_invert_invert_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (invert_invert_3_we),
.wd (invert_invert_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.invert[3].q ),
// to register interface (read)
.qs (invert_invert_3_qs)
);
// F[invert_4]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_invert_invert_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (invert_invert_4_we),
.wd (invert_invert_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.invert[4].q ),
// to register interface (read)
.qs (invert_invert_4_qs)
);
// F[invert_5]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_invert_invert_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (invert_invert_5_we),
.wd (invert_invert_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.invert[5].q ),
// to register interface (read)
.qs (invert_invert_5_qs)
);
// Subregister 0 of Multireg pwm_param
// R[pwm_param_0]: V(False)
// F[phase_delay_0]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_pwm_param_0_phase_delay_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_0_phase_delay_0_we),
.wd (pwm_param_0_phase_delay_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[0].phase_delay.q ),
// to register interface (read)
.qs (pwm_param_0_phase_delay_0_qs)
);
// F[htbt_en_0]: 30:30
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_0_htbt_en_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_0_htbt_en_0_we),
.wd (pwm_param_0_htbt_en_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[0].htbt_en.q ),
// to register interface (read)
.qs (pwm_param_0_htbt_en_0_qs)
);
// F[blink_en_0]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_0_blink_en_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_0_blink_en_0_we),
.wd (pwm_param_0_blink_en_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[0].blink_en.q ),
// to register interface (read)
.qs (pwm_param_0_blink_en_0_qs)
);
// Subregister 1 of Multireg pwm_param
// R[pwm_param_1]: V(False)
// F[phase_delay_1]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_pwm_param_1_phase_delay_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_1_phase_delay_1_we),
.wd (pwm_param_1_phase_delay_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[1].phase_delay.q ),
// to register interface (read)
.qs (pwm_param_1_phase_delay_1_qs)
);
// F[htbt_en_1]: 30:30
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_1_htbt_en_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_1_htbt_en_1_we),
.wd (pwm_param_1_htbt_en_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[1].htbt_en.q ),
// to register interface (read)
.qs (pwm_param_1_htbt_en_1_qs)
);
// F[blink_en_1]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_1_blink_en_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_1_blink_en_1_we),
.wd (pwm_param_1_blink_en_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[1].blink_en.q ),
// to register interface (read)
.qs (pwm_param_1_blink_en_1_qs)
);
// Subregister 2 of Multireg pwm_param
// R[pwm_param_2]: V(False)
// F[phase_delay_2]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_pwm_param_2_phase_delay_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_2_phase_delay_2_we),
.wd (pwm_param_2_phase_delay_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[2].phase_delay.q ),
// to register interface (read)
.qs (pwm_param_2_phase_delay_2_qs)
);
// F[htbt_en_2]: 30:30
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_2_htbt_en_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_2_htbt_en_2_we),
.wd (pwm_param_2_htbt_en_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[2].htbt_en.q ),
// to register interface (read)
.qs (pwm_param_2_htbt_en_2_qs)
);
// F[blink_en_2]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_2_blink_en_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_2_blink_en_2_we),
.wd (pwm_param_2_blink_en_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[2].blink_en.q ),
// to register interface (read)
.qs (pwm_param_2_blink_en_2_qs)
);
// Subregister 3 of Multireg pwm_param
// R[pwm_param_3]: V(False)
// F[phase_delay_3]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_pwm_param_3_phase_delay_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_3_phase_delay_3_we),
.wd (pwm_param_3_phase_delay_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[3].phase_delay.q ),
// to register interface (read)
.qs (pwm_param_3_phase_delay_3_qs)
);
// F[htbt_en_3]: 30:30
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_3_htbt_en_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_3_htbt_en_3_we),
.wd (pwm_param_3_htbt_en_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[3].htbt_en.q ),
// to register interface (read)
.qs (pwm_param_3_htbt_en_3_qs)
);
// F[blink_en_3]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_3_blink_en_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_3_blink_en_3_we),
.wd (pwm_param_3_blink_en_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[3].blink_en.q ),
// to register interface (read)
.qs (pwm_param_3_blink_en_3_qs)
);
// Subregister 4 of Multireg pwm_param
// R[pwm_param_4]: V(False)
// F[phase_delay_4]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_pwm_param_4_phase_delay_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_4_phase_delay_4_we),
.wd (pwm_param_4_phase_delay_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[4].phase_delay.q ),
// to register interface (read)
.qs (pwm_param_4_phase_delay_4_qs)
);
// F[htbt_en_4]: 30:30
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_4_htbt_en_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_4_htbt_en_4_we),
.wd (pwm_param_4_htbt_en_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[4].htbt_en.q ),
// to register interface (read)
.qs (pwm_param_4_htbt_en_4_qs)
);
// F[blink_en_4]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_4_blink_en_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_4_blink_en_4_we),
.wd (pwm_param_4_blink_en_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[4].blink_en.q ),
// to register interface (read)
.qs (pwm_param_4_blink_en_4_qs)
);
// Subregister 5 of Multireg pwm_param
// R[pwm_param_5]: V(False)
// F[phase_delay_5]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_pwm_param_5_phase_delay_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_5_phase_delay_5_we),
.wd (pwm_param_5_phase_delay_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[5].phase_delay.q ),
// to register interface (read)
.qs (pwm_param_5_phase_delay_5_qs)
);
// F[htbt_en_5]: 30:30
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_5_htbt_en_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_5_htbt_en_5_we),
.wd (pwm_param_5_htbt_en_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[5].htbt_en.q ),
// to register interface (read)
.qs (pwm_param_5_htbt_en_5_qs)
);
// F[blink_en_5]: 31:31
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_pwm_param_5_blink_en_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (pwm_param_5_blink_en_5_we),
.wd (pwm_param_5_blink_en_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.pwm_param[5].blink_en.q ),
// to register interface (read)
.qs (pwm_param_5_blink_en_5_qs)
);
// Subregister 0 of Multireg duty_cycle
// R[duty_cycle_0]: V(False)
// F[a_0]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_0_a_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_0_a_0_we),
.wd (duty_cycle_0_a_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[0].a.q ),
// to register interface (read)
.qs (duty_cycle_0_a_0_qs)
);
// F[b_0]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_0_b_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_0_b_0_we),
.wd (duty_cycle_0_b_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[0].b.q ),
// to register interface (read)
.qs (duty_cycle_0_b_0_qs)
);
// Subregister 1 of Multireg duty_cycle
// R[duty_cycle_1]: V(False)
// F[a_1]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_1_a_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_1_a_1_we),
.wd (duty_cycle_1_a_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[1].a.q ),
// to register interface (read)
.qs (duty_cycle_1_a_1_qs)
);
// F[b_1]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_1_b_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_1_b_1_we),
.wd (duty_cycle_1_b_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[1].b.q ),
// to register interface (read)
.qs (duty_cycle_1_b_1_qs)
);
// Subregister 2 of Multireg duty_cycle
// R[duty_cycle_2]: V(False)
// F[a_2]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_2_a_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_2_a_2_we),
.wd (duty_cycle_2_a_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[2].a.q ),
// to register interface (read)
.qs (duty_cycle_2_a_2_qs)
);
// F[b_2]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_2_b_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_2_b_2_we),
.wd (duty_cycle_2_b_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[2].b.q ),
// to register interface (read)
.qs (duty_cycle_2_b_2_qs)
);
// Subregister 3 of Multireg duty_cycle
// R[duty_cycle_3]: V(False)
// F[a_3]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_3_a_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_3_a_3_we),
.wd (duty_cycle_3_a_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[3].a.q ),
// to register interface (read)
.qs (duty_cycle_3_a_3_qs)
);
// F[b_3]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_3_b_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_3_b_3_we),
.wd (duty_cycle_3_b_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[3].b.q ),
// to register interface (read)
.qs (duty_cycle_3_b_3_qs)
);
// Subregister 4 of Multireg duty_cycle
// R[duty_cycle_4]: V(False)
// F[a_4]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_4_a_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_4_a_4_we),
.wd (duty_cycle_4_a_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[4].a.q ),
// to register interface (read)
.qs (duty_cycle_4_a_4_qs)
);
// F[b_4]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_4_b_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_4_b_4_we),
.wd (duty_cycle_4_b_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[4].b.q ),
// to register interface (read)
.qs (duty_cycle_4_b_4_qs)
);
// Subregister 5 of Multireg duty_cycle
// R[duty_cycle_5]: V(False)
// F[a_5]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_5_a_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_5_a_5_we),
.wd (duty_cycle_5_a_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[5].a.q ),
// to register interface (read)
.qs (duty_cycle_5_a_5_qs)
);
// F[b_5]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h7fff)
) u_duty_cycle_5_b_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (duty_cycle_5_b_5_we),
.wd (duty_cycle_5_b_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.duty_cycle[5].b.q ),
// to register interface (read)
.qs (duty_cycle_5_b_5_qs)
);
// Subregister 0 of Multireg blink_param
// R[blink_param_0]: V(False)
// F[x_0]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_0_x_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_0_x_0_we),
.wd (blink_param_0_x_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[0].x.q ),
// to register interface (read)
.qs (blink_param_0_x_0_qs)
);
// F[y_0]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_0_y_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_0_y_0_we),
.wd (blink_param_0_y_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[0].y.q ),
// to register interface (read)
.qs (blink_param_0_y_0_qs)
);
// Subregister 1 of Multireg blink_param
// R[blink_param_1]: V(False)
// F[x_1]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_1_x_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_1_x_1_we),
.wd (blink_param_1_x_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[1].x.q ),
// to register interface (read)
.qs (blink_param_1_x_1_qs)
);
// F[y_1]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_1_y_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_1_y_1_we),
.wd (blink_param_1_y_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[1].y.q ),
// to register interface (read)
.qs (blink_param_1_y_1_qs)
);
// Subregister 2 of Multireg blink_param
// R[blink_param_2]: V(False)
// F[x_2]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_2_x_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_2_x_2_we),
.wd (blink_param_2_x_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[2].x.q ),
// to register interface (read)
.qs (blink_param_2_x_2_qs)
);
// F[y_2]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_2_y_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_2_y_2_we),
.wd (blink_param_2_y_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[2].y.q ),
// to register interface (read)
.qs (blink_param_2_y_2_qs)
);
// Subregister 3 of Multireg blink_param
// R[blink_param_3]: V(False)
// F[x_3]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_3_x_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_3_x_3_we),
.wd (blink_param_3_x_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[3].x.q ),
// to register interface (read)
.qs (blink_param_3_x_3_qs)
);
// F[y_3]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_3_y_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_3_y_3_we),
.wd (blink_param_3_y_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[3].y.q ),
// to register interface (read)
.qs (blink_param_3_y_3_qs)
);
// Subregister 4 of Multireg blink_param
// R[blink_param_4]: V(False)
// F[x_4]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_4_x_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_4_x_4_we),
.wd (blink_param_4_x_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[4].x.q ),
// to register interface (read)
.qs (blink_param_4_x_4_qs)
);
// F[y_4]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_4_y_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_4_y_4_we),
.wd (blink_param_4_y_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[4].y.q ),
// to register interface (read)
.qs (blink_param_4_y_4_qs)
);
// Subregister 5 of Multireg blink_param
// R[blink_param_5]: V(False)
// F[x_5]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_5_x_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_5_x_5_we),
.wd (blink_param_5_x_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[5].x.q ),
// to register interface (read)
.qs (blink_param_5_x_5_qs)
);
// F[y_5]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_blink_param_5_y_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (blink_param_5_y_5_we),
.wd (blink_param_5_y_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.blink_param[5].y.q ),
// to register interface (read)
.qs (blink_param_5_y_5_qs)
);
logic [21:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == PWM_REGEN_OFFSET);
addr_hit[ 1] = (reg_addr == PWM_CFG_OFFSET);
addr_hit[ 2] = (reg_addr == PWM_PWM_EN_OFFSET);
addr_hit[ 3] = (reg_addr == PWM_INVERT_OFFSET);
addr_hit[ 4] = (reg_addr == PWM_PWM_PARAM_0_OFFSET);
addr_hit[ 5] = (reg_addr == PWM_PWM_PARAM_1_OFFSET);
addr_hit[ 6] = (reg_addr == PWM_PWM_PARAM_2_OFFSET);
addr_hit[ 7] = (reg_addr == PWM_PWM_PARAM_3_OFFSET);
addr_hit[ 8] = (reg_addr == PWM_PWM_PARAM_4_OFFSET);
addr_hit[ 9] = (reg_addr == PWM_PWM_PARAM_5_OFFSET);
addr_hit[10] = (reg_addr == PWM_DUTY_CYCLE_0_OFFSET);
addr_hit[11] = (reg_addr == PWM_DUTY_CYCLE_1_OFFSET);
addr_hit[12] = (reg_addr == PWM_DUTY_CYCLE_2_OFFSET);
addr_hit[13] = (reg_addr == PWM_DUTY_CYCLE_3_OFFSET);
addr_hit[14] = (reg_addr == PWM_DUTY_CYCLE_4_OFFSET);
addr_hit[15] = (reg_addr == PWM_DUTY_CYCLE_5_OFFSET);
addr_hit[16] = (reg_addr == PWM_BLINK_PARAM_0_OFFSET);
addr_hit[17] = (reg_addr == PWM_BLINK_PARAM_1_OFFSET);
addr_hit[18] = (reg_addr == PWM_BLINK_PARAM_2_OFFSET);
addr_hit[19] = (reg_addr == PWM_BLINK_PARAM_3_OFFSET);
addr_hit[20] = (reg_addr == PWM_BLINK_PARAM_4_OFFSET);
addr_hit[21] = (reg_addr == PWM_BLINK_PARAM_5_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (PWM_PERMIT[ 0] != (PWM_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (PWM_PERMIT[ 1] != (PWM_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (PWM_PERMIT[ 2] != (PWM_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (PWM_PERMIT[ 3] != (PWM_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (PWM_PERMIT[ 4] != (PWM_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (PWM_PERMIT[ 5] != (PWM_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (PWM_PERMIT[ 6] != (PWM_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (PWM_PERMIT[ 7] != (PWM_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (PWM_PERMIT[ 8] != (PWM_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (PWM_PERMIT[ 9] != (PWM_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (PWM_PERMIT[10] != (PWM_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[11] && reg_we && (PWM_PERMIT[11] != (PWM_PERMIT[11] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[12] && reg_we && (PWM_PERMIT[12] != (PWM_PERMIT[12] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[13] && reg_we && (PWM_PERMIT[13] != (PWM_PERMIT[13] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[14] && reg_we && (PWM_PERMIT[14] != (PWM_PERMIT[14] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[15] && reg_we && (PWM_PERMIT[15] != (PWM_PERMIT[15] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[16] && reg_we && (PWM_PERMIT[16] != (PWM_PERMIT[16] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[17] && reg_we && (PWM_PERMIT[17] != (PWM_PERMIT[17] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[18] && reg_we && (PWM_PERMIT[18] != (PWM_PERMIT[18] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[19] && reg_we && (PWM_PERMIT[19] != (PWM_PERMIT[19] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[20] && reg_we && (PWM_PERMIT[20] != (PWM_PERMIT[20] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[21] && reg_we && (PWM_PERMIT[21] != (PWM_PERMIT[21] & reg_be))) wr_err = 1'b1 ;
end
assign regen_we = addr_hit[0] & reg_we & !reg_error;
assign regen_wd = reg_wdata[0];
assign cfg_clk_div_we = addr_hit[1] & reg_we & !reg_error;
assign cfg_clk_div_wd = reg_wdata[26:0];
assign cfg_dc_resn_we = addr_hit[1] & reg_we & !reg_error;
assign cfg_dc_resn_wd = reg_wdata[30:27];
assign cfg_cntr_en_we = addr_hit[1] & reg_we & !reg_error;
assign cfg_cntr_en_wd = reg_wdata[31];
assign pwm_en_en_0_we = addr_hit[2] & reg_we & !reg_error;
assign pwm_en_en_0_wd = reg_wdata[0];
assign pwm_en_en_1_we = addr_hit[2] & reg_we & !reg_error;
assign pwm_en_en_1_wd = reg_wdata[1];
assign pwm_en_en_2_we = addr_hit[2] & reg_we & !reg_error;
assign pwm_en_en_2_wd = reg_wdata[2];
assign pwm_en_en_3_we = addr_hit[2] & reg_we & !reg_error;
assign pwm_en_en_3_wd = reg_wdata[3];
assign pwm_en_en_4_we = addr_hit[2] & reg_we & !reg_error;
assign pwm_en_en_4_wd = reg_wdata[4];
assign pwm_en_en_5_we = addr_hit[2] & reg_we & !reg_error;
assign pwm_en_en_5_wd = reg_wdata[5];
assign invert_invert_0_we = addr_hit[3] & reg_we & !reg_error;
assign invert_invert_0_wd = reg_wdata[0];
assign invert_invert_1_we = addr_hit[3] & reg_we & !reg_error;
assign invert_invert_1_wd = reg_wdata[1];
assign invert_invert_2_we = addr_hit[3] & reg_we & !reg_error;
assign invert_invert_2_wd = reg_wdata[2];
assign invert_invert_3_we = addr_hit[3] & reg_we & !reg_error;
assign invert_invert_3_wd = reg_wdata[3];
assign invert_invert_4_we = addr_hit[3] & reg_we & !reg_error;
assign invert_invert_4_wd = reg_wdata[4];
assign invert_invert_5_we = addr_hit[3] & reg_we & !reg_error;
assign invert_invert_5_wd = reg_wdata[5];
assign pwm_param_0_phase_delay_0_we = addr_hit[4] & reg_we & !reg_error;
assign pwm_param_0_phase_delay_0_wd = reg_wdata[15:0];
assign pwm_param_0_htbt_en_0_we = addr_hit[4] & reg_we & !reg_error;
assign pwm_param_0_htbt_en_0_wd = reg_wdata[30];
assign pwm_param_0_blink_en_0_we = addr_hit[4] & reg_we & !reg_error;
assign pwm_param_0_blink_en_0_wd = reg_wdata[31];
assign pwm_param_1_phase_delay_1_we = addr_hit[5] & reg_we & !reg_error;
assign pwm_param_1_phase_delay_1_wd = reg_wdata[15:0];
assign pwm_param_1_htbt_en_1_we = addr_hit[5] & reg_we & !reg_error;
assign pwm_param_1_htbt_en_1_wd = reg_wdata[30];
assign pwm_param_1_blink_en_1_we = addr_hit[5] & reg_we & !reg_error;
assign pwm_param_1_blink_en_1_wd = reg_wdata[31];
assign pwm_param_2_phase_delay_2_we = addr_hit[6] & reg_we & !reg_error;
assign pwm_param_2_phase_delay_2_wd = reg_wdata[15:0];
assign pwm_param_2_htbt_en_2_we = addr_hit[6] & reg_we & !reg_error;
assign pwm_param_2_htbt_en_2_wd = reg_wdata[30];
assign pwm_param_2_blink_en_2_we = addr_hit[6] & reg_we & !reg_error;
assign pwm_param_2_blink_en_2_wd = reg_wdata[31];
assign pwm_param_3_phase_delay_3_we = addr_hit[7] & reg_we & !reg_error;
assign pwm_param_3_phase_delay_3_wd = reg_wdata[15:0];
assign pwm_param_3_htbt_en_3_we = addr_hit[7] & reg_we & !reg_error;
assign pwm_param_3_htbt_en_3_wd = reg_wdata[30];
assign pwm_param_3_blink_en_3_we = addr_hit[7] & reg_we & !reg_error;
assign pwm_param_3_blink_en_3_wd = reg_wdata[31];
assign pwm_param_4_phase_delay_4_we = addr_hit[8] & reg_we & !reg_error;
assign pwm_param_4_phase_delay_4_wd = reg_wdata[15:0];
assign pwm_param_4_htbt_en_4_we = addr_hit[8] & reg_we & !reg_error;
assign pwm_param_4_htbt_en_4_wd = reg_wdata[30];
assign pwm_param_4_blink_en_4_we = addr_hit[8] & reg_we & !reg_error;
assign pwm_param_4_blink_en_4_wd = reg_wdata[31];
assign pwm_param_5_phase_delay_5_we = addr_hit[9] & reg_we & !reg_error;
assign pwm_param_5_phase_delay_5_wd = reg_wdata[15:0];
assign pwm_param_5_htbt_en_5_we = addr_hit[9] & reg_we & !reg_error;
assign pwm_param_5_htbt_en_5_wd = reg_wdata[30];
assign pwm_param_5_blink_en_5_we = addr_hit[9] & reg_we & !reg_error;
assign pwm_param_5_blink_en_5_wd = reg_wdata[31];
assign duty_cycle_0_a_0_we = addr_hit[10] & reg_we & !reg_error;
assign duty_cycle_0_a_0_wd = reg_wdata[15:0];
assign duty_cycle_0_b_0_we = addr_hit[10] & reg_we & !reg_error;
assign duty_cycle_0_b_0_wd = reg_wdata[31:16];
assign duty_cycle_1_a_1_we = addr_hit[11] & reg_we & !reg_error;
assign duty_cycle_1_a_1_wd = reg_wdata[15:0];
assign duty_cycle_1_b_1_we = addr_hit[11] & reg_we & !reg_error;
assign duty_cycle_1_b_1_wd = reg_wdata[31:16];
assign duty_cycle_2_a_2_we = addr_hit[12] & reg_we & !reg_error;
assign duty_cycle_2_a_2_wd = reg_wdata[15:0];
assign duty_cycle_2_b_2_we = addr_hit[12] & reg_we & !reg_error;
assign duty_cycle_2_b_2_wd = reg_wdata[31:16];
assign duty_cycle_3_a_3_we = addr_hit[13] & reg_we & !reg_error;
assign duty_cycle_3_a_3_wd = reg_wdata[15:0];
assign duty_cycle_3_b_3_we = addr_hit[13] & reg_we & !reg_error;
assign duty_cycle_3_b_3_wd = reg_wdata[31:16];
assign duty_cycle_4_a_4_we = addr_hit[14] & reg_we & !reg_error;
assign duty_cycle_4_a_4_wd = reg_wdata[15:0];
assign duty_cycle_4_b_4_we = addr_hit[14] & reg_we & !reg_error;
assign duty_cycle_4_b_4_wd = reg_wdata[31:16];
assign duty_cycle_5_a_5_we = addr_hit[15] & reg_we & !reg_error;
assign duty_cycle_5_a_5_wd = reg_wdata[15:0];
assign duty_cycle_5_b_5_we = addr_hit[15] & reg_we & !reg_error;
assign duty_cycle_5_b_5_wd = reg_wdata[31:16];
assign blink_param_0_x_0_we = addr_hit[16] & reg_we & !reg_error;
assign blink_param_0_x_0_wd = reg_wdata[15:0];
assign blink_param_0_y_0_we = addr_hit[16] & reg_we & !reg_error;
assign blink_param_0_y_0_wd = reg_wdata[31:16];
assign blink_param_1_x_1_we = addr_hit[17] & reg_we & !reg_error;
assign blink_param_1_x_1_wd = reg_wdata[15:0];
assign blink_param_1_y_1_we = addr_hit[17] & reg_we & !reg_error;
assign blink_param_1_y_1_wd = reg_wdata[31:16];
assign blink_param_2_x_2_we = addr_hit[18] & reg_we & !reg_error;
assign blink_param_2_x_2_wd = reg_wdata[15:0];
assign blink_param_2_y_2_we = addr_hit[18] & reg_we & !reg_error;
assign blink_param_2_y_2_wd = reg_wdata[31:16];
assign blink_param_3_x_3_we = addr_hit[19] & reg_we & !reg_error;
assign blink_param_3_x_3_wd = reg_wdata[15:0];
assign blink_param_3_y_3_we = addr_hit[19] & reg_we & !reg_error;
assign blink_param_3_y_3_wd = reg_wdata[31:16];
assign blink_param_4_x_4_we = addr_hit[20] & reg_we & !reg_error;
assign blink_param_4_x_4_wd = reg_wdata[15:0];
assign blink_param_4_y_4_we = addr_hit[20] & reg_we & !reg_error;
assign blink_param_4_y_4_wd = reg_wdata[31:16];
assign blink_param_5_x_5_we = addr_hit[21] & reg_we & !reg_error;
assign blink_param_5_x_5_wd = reg_wdata[15:0];
assign blink_param_5_y_5_we = addr_hit[21] & reg_we & !reg_error;
assign blink_param_5_y_5_wd = reg_wdata[31:16];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = regen_qs;
end
addr_hit[1]: begin
reg_rdata_next[26:0] = cfg_clk_div_qs;
reg_rdata_next[30:27] = cfg_dc_resn_qs;
reg_rdata_next[31] = cfg_cntr_en_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = pwm_en_en_0_qs;
reg_rdata_next[1] = pwm_en_en_1_qs;
reg_rdata_next[2] = pwm_en_en_2_qs;
reg_rdata_next[3] = pwm_en_en_3_qs;
reg_rdata_next[4] = pwm_en_en_4_qs;
reg_rdata_next[5] = pwm_en_en_5_qs;
end
addr_hit[3]: begin
reg_rdata_next[0] = invert_invert_0_qs;
reg_rdata_next[1] = invert_invert_1_qs;
reg_rdata_next[2] = invert_invert_2_qs;
reg_rdata_next[3] = invert_invert_3_qs;
reg_rdata_next[4] = invert_invert_4_qs;
reg_rdata_next[5] = invert_invert_5_qs;
end
addr_hit[4]: begin
reg_rdata_next[15:0] = pwm_param_0_phase_delay_0_qs;
reg_rdata_next[30] = pwm_param_0_htbt_en_0_qs;
reg_rdata_next[31] = pwm_param_0_blink_en_0_qs;
end
addr_hit[5]: begin
reg_rdata_next[15:0] = pwm_param_1_phase_delay_1_qs;
reg_rdata_next[30] = pwm_param_1_htbt_en_1_qs;
reg_rdata_next[31] = pwm_param_1_blink_en_1_qs;
end
addr_hit[6]: begin
reg_rdata_next[15:0] = pwm_param_2_phase_delay_2_qs;
reg_rdata_next[30] = pwm_param_2_htbt_en_2_qs;
reg_rdata_next[31] = pwm_param_2_blink_en_2_qs;
end
addr_hit[7]: begin
reg_rdata_next[15:0] = pwm_param_3_phase_delay_3_qs;
reg_rdata_next[30] = pwm_param_3_htbt_en_3_qs;
reg_rdata_next[31] = pwm_param_3_blink_en_3_qs;
end
addr_hit[8]: begin
reg_rdata_next[15:0] = pwm_param_4_phase_delay_4_qs;
reg_rdata_next[30] = pwm_param_4_htbt_en_4_qs;
reg_rdata_next[31] = pwm_param_4_blink_en_4_qs;
end
addr_hit[9]: begin
reg_rdata_next[15:0] = pwm_param_5_phase_delay_5_qs;
reg_rdata_next[30] = pwm_param_5_htbt_en_5_qs;
reg_rdata_next[31] = pwm_param_5_blink_en_5_qs;
end
addr_hit[10]: begin
reg_rdata_next[15:0] = duty_cycle_0_a_0_qs;
reg_rdata_next[31:16] = duty_cycle_0_b_0_qs;
end
addr_hit[11]: begin
reg_rdata_next[15:0] = duty_cycle_1_a_1_qs;
reg_rdata_next[31:16] = duty_cycle_1_b_1_qs;
end
addr_hit[12]: begin
reg_rdata_next[15:0] = duty_cycle_2_a_2_qs;
reg_rdata_next[31:16] = duty_cycle_2_b_2_qs;
end
addr_hit[13]: begin
reg_rdata_next[15:0] = duty_cycle_3_a_3_qs;
reg_rdata_next[31:16] = duty_cycle_3_b_3_qs;
end
addr_hit[14]: begin
reg_rdata_next[15:0] = duty_cycle_4_a_4_qs;
reg_rdata_next[31:16] = duty_cycle_4_b_4_qs;
end
addr_hit[15]: begin
reg_rdata_next[15:0] = duty_cycle_5_a_5_qs;
reg_rdata_next[31:16] = duty_cycle_5_b_5_qs;
end
addr_hit[16]: begin
reg_rdata_next[15:0] = blink_param_0_x_0_qs;
reg_rdata_next[31:16] = blink_param_0_y_0_qs;
end
addr_hit[17]: begin
reg_rdata_next[15:0] = blink_param_1_x_1_qs;
reg_rdata_next[31:16] = blink_param_1_y_1_qs;
end
addr_hit[18]: begin
reg_rdata_next[15:0] = blink_param_2_x_2_qs;
reg_rdata_next[31:16] = blink_param_2_y_2_qs;
end
addr_hit[19]: begin
reg_rdata_next[15:0] = blink_param_3_x_3_qs;
reg_rdata_next[31:16] = blink_param_3_y_3_qs;
end
addr_hit[20]: begin
reg_rdata_next[15:0] = blink_param_4_x_4_qs;
reg_rdata_next[31:16] = blink_param_4_y_4_qs;
end
addr_hit[21]: begin
reg_rdata_next[15:0] = blink_param_5_x_5_qs;
reg_rdata_next[31:16] = blink_param_5_y_5_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule