blob: 42c8dfe01b8b70fe9063974dcb9fdfc1c3f482e3 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// AES cipher core control
//
// This module controls the AES cipher core including the key expand module.
`include "prim_assert.sv"
module aes_cipher_control
#(
parameter bit Masking = 0
) (
input logic clk_i,
input logic rst_ni,
// Input handshake signals
input logic in_valid_i,
output logic in_ready_o,
// Output handshake signals
output logic out_valid_o,
input logic out_ready_i,
// Control and sync signals
input logic cfg_valid_i,
input aes_pkg::ciph_op_e op_i,
input aes_pkg::key_len_e key_len_i,
input logic crypt_i,
output logic crypt_o,
input logic dec_key_gen_i,
output logic dec_key_gen_o,
input logic key_clear_i,
output logic key_clear_o,
input logic data_out_clear_i,
output logic data_out_clear_o,
// Control signals for masking PRNG
output logic prng_update_o,
output logic prng_reseed_req_o,
input logic prng_reseed_ack_i,
// Control and sync signals for cipher data path
output aes_pkg::state_sel_e state_sel_o,
output logic state_we_o,
output logic sub_bytes_en_o,
input logic sub_bytes_out_req_i,
output logic sub_bytes_out_ack_o,
output aes_pkg::add_rk_sel_e add_rk_sel_o,
// Control and sync signals for key expand data path
output aes_pkg::ciph_op_e key_expand_op_o,
output aes_pkg::key_full_sel_e key_full_sel_o,
output logic key_full_we_o,
output aes_pkg::key_dec_sel_e key_dec_sel_o,
output logic key_dec_we_o,
output logic key_expand_en_o,
input logic key_expand_out_req_i,
output logic key_expand_out_ack_o,
output logic key_expand_clear_o,
output logic [3:0] key_expand_round_o,
output aes_pkg::key_words_sel_e key_words_sel_o,
output aes_pkg::round_key_sel_e round_key_sel_o
);
import aes_pkg::*;
// Types
typedef enum logic [2:0] {
IDLE, INIT, ROUND, FINISH, CLEAR_S, CLEAR_KD
} aes_cipher_ctrl_e;
aes_cipher_ctrl_e aes_cipher_ctrl_ns, aes_cipher_ctrl_cs;
// Signals
logic [3:0] round_d, round_q;
logic [3:0] num_rounds_d, num_rounds_q;
logic [3:0] num_rounds_regular;
logic crypt_d, crypt_q;
logic dec_key_gen_d, dec_key_gen_q;
logic key_clear_d, key_clear_q;
logic data_out_clear_d, data_out_clear_q;
logic prng_reseed_done_d, prng_reseed_done_q;
// cfg_valid_i is used for gating assertions only.
logic unused_cfg_valid;
assign unused_cfg_valid = cfg_valid_i;
// FSM
always_comb begin : aes_cipher_ctrl_fsm
// Handshake signals
in_ready_o = 1'b0;
out_valid_o = 1'b0;
// Masking PRNG signals
prng_update_o = 1'b0;
prng_reseed_req_o = 1'b0;
// Cipher data path
state_sel_o = STATE_ROUND;
state_we_o = 1'b0;
add_rk_sel_o = ADD_RK_ROUND;
sub_bytes_en_o = 1'b0;
sub_bytes_out_ack_o = 1'b0;
// Key expand data path
key_full_sel_o = KEY_FULL_ROUND;
key_full_we_o = 1'b0;
key_dec_sel_o = KEY_DEC_EXPAND;
key_dec_we_o = 1'b0;
key_expand_en_o = 1'b0;
key_expand_out_ack_o = 1'b0;
key_expand_clear_o = 1'b0;
key_words_sel_o = KEY_WORDS_ZERO;
round_key_sel_o = ROUND_KEY_DIRECT;
// FSM
aes_cipher_ctrl_ns = aes_cipher_ctrl_cs;
round_d = round_q;
num_rounds_d = num_rounds_q;
crypt_d = crypt_q;
dec_key_gen_d = dec_key_gen_q;
key_clear_d = key_clear_q;
data_out_clear_d = data_out_clear_q;
prng_reseed_done_d = prng_reseed_done_q | prng_reseed_ack_i;
unique case (aes_cipher_ctrl_cs)
IDLE: begin
dec_key_gen_d = 1'b0;
// Signal that we are ready, wait for handshake.
in_ready_o = 1'b1;
if (in_valid_i) begin
if (key_clear_i || data_out_clear_i) begin
// Clear internal key registers. The cipher core muxes are used to clear the data
// output registers.
key_clear_d = key_clear_i;
data_out_clear_d = data_out_clear_i;
// To clear the data output registers, we must first clear the state.
aes_cipher_ctrl_ns = data_out_clear_i ? CLEAR_S : CLEAR_KD;
end else if (dec_key_gen_i || crypt_i) begin
// Start encryption/decryption or generation of start key for decryption.
crypt_d = ~dec_key_gen_i;
dec_key_gen_d = dec_key_gen_i;
// Load input data to state
state_sel_o = dec_key_gen_d ? STATE_CLEAR : STATE_INIT;
state_we_o = 1'b1;
// Make the masking PRNG advance. The current pseudo-random data is used to mask the
// input data.
prng_update_o = dec_key_gen_d ? 1'b0 : Masking;
// Init key expand
key_expand_clear_o = 1'b1;
// Load full key
key_full_sel_o = dec_key_gen_d ? KEY_FULL_ENC_INIT :
(op_i == CIPH_FWD) ? KEY_FULL_ENC_INIT :
KEY_FULL_DEC_INIT;
key_full_we_o = 1'b1;
// Load num_rounds, clear round
round_d = '0;
num_rounds_d = (key_len_i == AES_128) ? 4'd10 :
(key_len_i == AES_192) ? 4'd12 :
4'd14;
aes_cipher_ctrl_ns = INIT;
end
end
end
INIT: begin
// Initial round: just add key to state
add_rk_sel_o = ADD_RK_INIT;
// Select key words for initial add_round_key
key_words_sel_o = dec_key_gen_q ? KEY_WORDS_ZERO :
(key_len_i == AES_128) ? KEY_WORDS_0123 :
(key_len_i == AES_192 && op_i == CIPH_FWD) ? KEY_WORDS_0123 :
(key_len_i == AES_192 && op_i == CIPH_INV) ? KEY_WORDS_2345 :
(key_len_i == AES_256 && op_i == CIPH_FWD) ? KEY_WORDS_0123 :
(key_len_i == AES_256 && op_i == CIPH_INV) ? KEY_WORDS_4567 : KEY_WORDS_ZERO;
// Clear masking PRNG reseed status.
prng_reseed_done_d = 1'b0;
// AES-256 has two round keys available right from beginning. Pseudo-random data is
// required by KeyExpand only, and only if it is actually advancing.
if (key_len_i != AES_256) begin
// Advance in sync with KeyExpand. Based on the S-Box implementation, it can take
// multiple cycles to finish. Wait for handshake.
key_expand_en_o = 1'b1;
if (key_expand_out_req_i) begin
key_expand_out_ack_o = 1'b1;
state_we_o = ~dec_key_gen_q;
key_full_we_o = 1'b1;
prng_update_o = Masking;
aes_cipher_ctrl_ns = ROUND;
end
end else begin
state_we_o = ~dec_key_gen_q;
aes_cipher_ctrl_ns = ROUND;
end
end
ROUND: begin
// Normal rounds
// Select key words for add_round_key
key_words_sel_o = dec_key_gen_q ? KEY_WORDS_ZERO :
(key_len_i == AES_128) ? KEY_WORDS_0123 :
(key_len_i == AES_192 && op_i == CIPH_FWD) ? KEY_WORDS_2345 :
(key_len_i == AES_192 && op_i == CIPH_INV) ? KEY_WORDS_0123 :
(key_len_i == AES_256 && op_i == CIPH_FWD) ? KEY_WORDS_4567 :
(key_len_i == AES_256 && op_i == CIPH_INV) ? KEY_WORDS_0123 : KEY_WORDS_ZERO;
// Keep requesting PRNG reseeding until it is acknowledged.
prng_reseed_req_o = Masking & ~prng_reseed_done_q;
// Select round key: direct or mixed (equivalent inverse cipher)
round_key_sel_o = (op_i == CIPH_FWD) ? ROUND_KEY_DIRECT : ROUND_KEY_MIXED;
// Advance in sync with SubBytes and KeyExpand. Based on the S-Box implementation, both can
// take multiple cycles to finish. Wait for handshake.
sub_bytes_en_o = ~dec_key_gen_q;
key_expand_en_o = 1'b1;
if ((dec_key_gen_q || sub_bytes_out_req_i) && key_expand_out_req_i) begin
sub_bytes_out_ack_o = ~dec_key_gen_q;
key_expand_out_ack_o = 1'b1;
state_we_o = ~dec_key_gen_q;
key_full_we_o = 1'b1;
// Update round
round_d = round_q + 4'b0001;
// Make the masking PRNG advance once per round only. Updating it while waiting for key
// expand would cause the SBoxes to be re-evaluated, thereby creating additional SCA
// leakage.
prng_update_o = Masking;
// Are we doing the last regular round?
if (round_q == num_rounds_regular) begin
aes_cipher_ctrl_ns = FINISH;
if (dec_key_gen_q) begin
// Write decryption key.
key_dec_we_o = 1'b1;
// Indicate that we are done, try to perform the handshake. But we don't wait here.
// If we don't get the handshake now, we will wait in the finish state. When using
// masking, we only finish if the masking PRNG has been reseeded.
out_valid_o = Masking ? prng_reseed_done_q : 1'b1;
if (out_valid_o && out_ready_i) begin
// Go to idle state directly.
dec_key_gen_d = 1'b0;
aes_cipher_ctrl_ns = IDLE;
end
end
end // round_q
end // SubBytes/KeyExpand REQ/ACK
end
FINISH: begin
// Final round
// Select key words for add_round_key
key_words_sel_o = dec_key_gen_q ? KEY_WORDS_ZERO :
(key_len_i == AES_128) ? KEY_WORDS_0123 :
(key_len_i == AES_192 && op_i == CIPH_FWD) ? KEY_WORDS_2345 :
(key_len_i == AES_192 && op_i == CIPH_INV) ? KEY_WORDS_0123 :
(key_len_i == AES_256 && op_i == CIPH_FWD) ? KEY_WORDS_4567 :
(key_len_i == AES_256 && op_i == CIPH_INV) ? KEY_WORDS_0123 : KEY_WORDS_ZERO;
// Skip mix_columns
add_rk_sel_o = ADD_RK_FINAL;
// Advance in sync with SubBytes. Based on the S-Box implementation, it can take multiple
// cycles to finish. Only indicate that we are done if:
// - we have valid output (SubBytes finished), and
// - the masking PRNG has been reseeded (if masking is used).
// Perform both handshakes simultaneously.
sub_bytes_en_o = ~dec_key_gen_q;
out_valid_o = (dec_key_gen_q | sub_bytes_out_req_i) & (Masking == prng_reseed_done_q);
if (out_valid_o && out_ready_i) begin
sub_bytes_out_ack_o = ~dec_key_gen_q;
// We don't need the state anymore, clear it.
state_we_o = 1'b1;
state_sel_o = STATE_CLEAR;
crypt_d = 1'b0;
// Make the masking PRNG advance once only. Updating it while being stalled would
// cause the SBoxes to be re-evaluated, thereby creating additional SCA leakage.
prng_update_o = Masking;
// If we were generating the decryption key and didn't get the handshake in the last
// regular round, we should clear dec_key_gen now.
dec_key_gen_d = 1'b0;
aes_cipher_ctrl_ns = IDLE;
end
end
CLEAR_S: begin
// Clear the state with pseudo-random data.
state_we_o = 1'b1;
state_sel_o = STATE_CLEAR;
aes_cipher_ctrl_ns = CLEAR_KD;
end
CLEAR_KD: begin
// Clear internal key registers and/or external data output registers.
if (key_clear_q) begin
key_full_sel_o = KEY_FULL_CLEAR;
key_full_we_o = 1'b1;
key_dec_sel_o = KEY_DEC_CLEAR;
key_dec_we_o = 1'b1;
end
if (data_out_clear_q) begin
// Forward the state (previously cleared with psuedo-random data).
add_rk_sel_o = ADD_RK_INIT;
key_words_sel_o = KEY_WORDS_ZERO;
round_key_sel_o = ROUND_KEY_DIRECT;
end
// Indicate that we are done, wait for handshake.
out_valid_o = 1'b1;
if (out_ready_i) begin
key_clear_d = 1'b0;
data_out_clear_d = 1'b0;
aes_cipher_ctrl_ns = IDLE;
end
end
default: aes_cipher_ctrl_ns = IDLE;
endcase
end
always_ff @(posedge clk_i or negedge rst_ni) begin : reg_fsm
if (!rst_ni) begin
aes_cipher_ctrl_cs <= IDLE;
round_q <= '0;
num_rounds_q <= '0;
crypt_q <= 1'b0;
dec_key_gen_q <= 1'b0;
key_clear_q <= 1'b0;
data_out_clear_q <= 1'b0;
prng_reseed_done_q <= 1'b0;
end else begin
aes_cipher_ctrl_cs <= aes_cipher_ctrl_ns;
round_q <= round_d;
num_rounds_q <= num_rounds_d;
crypt_q <= crypt_d;
dec_key_gen_q <= dec_key_gen_d;
key_clear_q <= key_clear_d;
data_out_clear_q <= data_out_clear_d;
prng_reseed_done_q <= prng_reseed_done_d;
end
end
// Use separate signal for number of regular rounds.
assign num_rounds_regular = num_rounds_q - 4'd2;
// Use separate signals for key expand operation and round.
assign key_expand_op_o = (dec_key_gen_d || dec_key_gen_q) ? CIPH_FWD : op_i;
assign key_expand_round_o = round_d;
// Let the main controller know whate we are doing.
assign crypt_o = crypt_q;
assign dec_key_gen_o = dec_key_gen_q;
assign key_clear_o = key_clear_q;
assign data_out_clear_o = data_out_clear_q;
////////////////
// Assertions //
////////////////
// Selectors must be known/valid
`ASSERT_KNOWN(AesCiphOpKnown, op_i)
`ASSERT(AesKeyLenValid, cfg_valid_i |-> key_len_i inside {
AES_128,
AES_192,
AES_256
})
`ASSERT(AesControlStateValid, aes_cipher_ctrl_cs inside {
IDLE,
INIT,
ROUND,
FINISH,
CLEAR_S,
CLEAR_KD
})
endmodule