blob: 277e7ce49d36011bc4bc24256388ea857fa3cbba [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "iss_wrapper.h"
#include <cassert>
#include <cstring>
#include <fcntl.h>
#include <ftw.h>
#include <iostream>
#include <memory>
#include <regex>
#include <signal.h>
#include <sstream>
#include <sys/stat.h>
#include <sys/wait.h>
// Guard class to safely delete C strings
namespace {
struct CStrDeleter {
void operator()(char *p) const { std::free(p); }
};
} // namespace
typedef std::unique_ptr<char, CStrDeleter> c_str_ptr;
// Guard class to create (and possibly delete) temporary directories.
struct TmpDir {
std::string path;
TmpDir() : path(TmpDir::make_tmp_dir()) {}
~TmpDir() { cleanup(); }
private:
// A wrapper around mkdtemp that respects TMPDIR
static std::string make_tmp_dir() {
const char *tmpdir = getenv("TMPDIR");
if (!tmpdir)
tmpdir = "/tmp";
std::string tmp_template(tmpdir);
tmp_template += "/otbn_XXXXXX";
if (!mkdtemp(&tmp_template.at(0))) {
std::ostringstream oss;
oss << ("Cannot create temporary directory for OTBN simulation "
"with template ")
<< tmp_template << ": " << strerror(errno);
throw std::runtime_error(oss.str());
}
// The backing string for tmp_template will have been populated by mkdtemp.
return tmp_template;
}
// Return true if the OTBN_MODEL_KEEP_TMP environment variable is set to 1.
static bool should_keep_tmp() {
const char *keep_str = getenv("OTBN_MODEL_KEEP_TMP");
if (!keep_str)
return false;
return (strcmp(keep_str, "1") == 0) ? true : false;
}
// Called by nftw when we're deleting the temporary directory
static int ftw_callback(const char *fpath, const struct stat *sb,
int typeflag, struct FTW *ftwbuf) {
// The libc remove() function calls unlink or rmdir as necessary. Ignore
// any failures: we'll check that we managed to delete the directory when
// nftw finishes.
remove(fpath);
// Tell nftw to keep going
return 0;
}
// Recursively delete the temporary directory
void cleanup() {
if (path.empty())
return;
if (TmpDir::should_keep_tmp()) {
std::cerr << "Keeping temporary directory at " << path
<< " because OTBN_MODEL_KEEP_TMP=1.\n";
return;
}
// We're not supposed to keep the directory. Try to delete it and its
// contents. Ignore any failures: we'll just check whether it's gone
// afterwards.
nftw(path.c_str(), TmpDir::ftw_callback, 4, FTW_DEPTH | FTW_PHYS);
// Is there still anything at path? If so, we failed. Print something to
// stderr to tell the user what's going on.
struct stat statbuf;
if (stat(path.c_str(), &statbuf) == 0) {
std::cerr << "ERROR: Failed to delete OTBN temporary directory at "
<< path << ".\n";
}
}
};
// Find the otbn Python model, based on our executable path, and
// return it. On failure, throw a std::runtime_error with a
// description of what went wrong.
//
// This works by searching upwards from the binary location to find a git
// directory (which is assumed to be the OpenTitan toplevel). It won't work if
// you copy the binary somewhere else: if we need to support that sort of
// thing, we'll have to figure out a "proper" installation procedure.
static std::string find_otbn_model() {
c_str_ptr self_path(realpath("/proc/self/exe", NULL));
if (!self_path) {
std::ostringstream oss;
oss << "Cannot resolve /proc/self/exe: " << strerror(errno);
throw std::runtime_error(oss.str());
}
// Take a copy of self_path as a std::string and modify it, walking backwards
// over '/' characters and appending .git each time. After the first
// iteration, last_pos is the position of the character before the final
// slash (where the path looks something like "/path/to/check/.git")
std::string path_buf(self_path.get());
struct stat git_dir_stat;
size_t last_pos = std::string::npos;
for (;;) {
size_t last_slash = path_buf.find_last_of('/', last_pos);
// self_path was absolute, so there should always be a '/' at position
// zero.
assert(last_slash != std::string::npos);
if (last_slash == 0) {
// We've got to the slash at the start of an absolute path (and "/.git"
// is probably not the path we want!). Give up.
std::ostringstream oss;
oss << "Cannot find a git top-level directory containing "
<< self_path.get() << ".\n";
throw std::runtime_error(oss.str());
}
// Replace everything after last_slash with ".git". The first time around,
// this will turn "/path/to/elf-file" to "/path/to/.git". After that, it
// will turn "/path/to/check/.git" to "/path/to/.git". Note that last_slash
// is strictly less than the string length (because it's an element index),
// so last_slash + 1 won't fall off the end.
path_buf.replace(last_slash + 1, std::string::npos, ".git");
last_pos = last_slash - 1;
// Does path_buf name a directory? If so, we've found the enclosing git
// directory.
if (stat(path_buf.c_str(), &git_dir_stat) == 0 &&
S_ISDIR(git_dir_stat.st_mode)) {
break;
}
}
// If we get here, path_buf points at a .git directory. Resolve from there to
// the expected model name, then use realpath to canonicalise the path. If it
// fails, there was no script there.
path_buf += "/../hw/ip/otbn/dv/otbnsim/stepped.py";
c_str_ptr model_path(realpath(path_buf.c_str(), NULL));
if (!model_path) {
std::ostringstream oss;
oss << "Cannot find otbnsim.py, at '" << path_buf
<< "' (guessed by searching upwards from '" << self_path.get()
<< "').\n";
throw std::runtime_error(oss.str());
}
return std::string(model_path.get());
}
// Read 8 hex characters from str as a uint32_t.
static uint32_t read_hex_32(const char *str) {
char buf[9];
memcpy(buf, str, 8);
buf[8] = '\0';
return strtoul(buf, nullptr, 16);
}
ISSWrapper::ISSWrapper() : tmpdir(new TmpDir()) {
std::string model_path(find_otbn_model());
// We want two pipes: one for writing to the child process, and the other for
// reading from it. We set the O_CLOEXEC flag so that the child process will
// drop all the fds when it execs.
int fds[4];
for (int i = 0; i < 2; ++i) {
if (pipe2(fds + 2 * i, O_CLOEXEC)) {
std::ostringstream oss;
oss << "Failed to open pipe " << i << " for ISS: " << strerror(errno);
throw std::runtime_error(oss.str());
}
}
// fds[0] and fds[2] are the read ends of two pipes, with write ends at
// fds[1] and fds[3], respectively.
//
// We'll attach fds[0] to the child's stdin and fds[3] to the child's stdout.
// That means we write to fds[1] to send data to the child and read from
// fds[2] to get data back.
pid_t pid = fork();
if (pid == -1) {
// Something went wrong.
std::ostringstream oss;
oss << "Failed to fork to create ISS process: " << strerror(errno);
throw std::runtime_error(oss.str());
}
if (pid == 0) {
// We are the child process. Attach stdin/stdout. (No need to close the
// pipe fds: we'll close them as part of the exec.)
close(0);
if (dup2(fds[0], 0) == -1) {
std::cerr << "Failed to set stdin in ISS subprocess: " << strerror(errno)
<< "\n";
abort();
}
close(1);
if (dup2(fds[3], 1) == -1) {
std::cerr << "Failed to set stdout in ISS subprocess: " << strerror(errno)
<< "\n";
abort();
}
// Finally, exec the ISS
execl(model_path.c_str(), model_path.c_str(), NULL);
}
// We are the parent process and pid is the PID of the child. Close the pipe
// ends that we don't need (because the child is using them)
close(fds[0]);
close(fds[3]);
child_pid = pid;
// Finally, construct FILE* streams for the fds (which will make life easier
// when we actually use them to communicate with the child process)
child_write_file = fdopen(fds[1], "w");
child_read_file = fdopen(fds[2], "r");
// The fdopen calls should have succeeded (because we know the fds are
// valid). Add an assertion to make sure nothing weird happens.
assert(child_write_file);
assert(child_read_file);
}
ISSWrapper::~ISSWrapper() {
// Stop the child process if it's still running. No need to be nice: we'll
// just send a SIGKILL. Also, no need to check whether it's running first: we
// can just fire off the signal and ignore whether it worked or not.
kill(child_pid, SIGKILL);
// Now wait for the child. This should be a very short wait.
waitpid(child_pid, NULL, 0);
// Close the child file handles.
fclose(child_write_file);
fclose(child_read_file);
}
void ISSWrapper::load_d(const std::string &path) {
std::ostringstream oss;
oss << "load_d " << path << "\n";
run_command(oss.str(), nullptr);
}
void ISSWrapper::load_i(const std::string &path) {
std::ostringstream oss;
oss << "load_i " << path << "\n";
run_command(oss.str(), nullptr);
}
void ISSWrapper::dump_d(const std::string &path) const {
std::ostringstream oss;
oss << "dump_d " << path << "\n";
run_command(oss.str(), nullptr);
}
void ISSWrapper::start(uint32_t addr) {
std::ostringstream oss;
oss << "start " << addr << "\n";
run_command(oss.str(), nullptr);
}
bool ISSWrapper::step() {
std::vector<std::string> lines;
run_command("step\n", &lines);
return saw_busy_cleared(lines);
}
void ISSWrapper::get_regs(std::array<uint32_t, 32> *gprs,
std::array<u256_t, 32> *wdrs) {
assert(gprs && wdrs);
std::vector<std::string> lines;
run_command("print_regs\n", &lines);
// A record of which registers we've seen (to check we see each
// register exactly once). GPR i sets bit i. WDR i sets bit 32 + i.
uint64_t seen_mask = 0;
// Lines look like
//
// x3 = 0x12345678
// w10 = 0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
std::regex re("\\s*([wx][0-9]{1,2})\\s*=\\s*0x([0-9a-f]+)\n");
std::smatch match;
for (const std::string &line : lines) {
if (line == "PRINT_REGS\n")
continue;
if (!std::regex_match(line, match, re)) {
std::ostringstream oss;
oss << "Invalid line in ISS print_register output (`" << line << "').";
throw std::runtime_error(oss.str());
}
assert(match.size() == 3);
std::string reg_name = match[1].str();
std::string str_value = match[2].str();
assert(reg_name.size() <= 3);
assert(reg_name[0] == 'w' || reg_name[0] == 'x');
bool is_wide = reg_name[0] == 'w';
int reg_idx = atoi(reg_name.c_str() + 1);
assert(reg_idx >= 0);
if (reg_idx >= 32) {
std::ostringstream oss;
oss << "Invalid register name in ISS output (`" << reg_name
<< "'). Line was `" << line << "'.";
throw std::runtime_error(oss.str());
}
unsigned idx_seen = reg_idx + (is_wide ? 32 : 0);
if ((seen_mask >> idx_seen) & 1) {
std::ostringstream oss;
oss << "Duplicate lines writing register " << reg_name << ".";
throw std::runtime_error(oss.str());
}
unsigned num_u32s = is_wide ? 8 : 1;
unsigned expected_value_len = 8 * num_u32s;
if (str_value.size() != expected_value_len) {
std::ostringstream oss;
oss << "Value for register " << reg_name << " has " << str_value.size()
<< " hex characters, but we expected " << expected_value_len << ".";
throw std::runtime_error(oss.str());
}
uint32_t *dst = is_wide ? &(*wdrs)[reg_idx].words[7] : &(*gprs)[reg_idx];
for (unsigned i = 0; i < num_u32s; ++i) {
*dst = read_hex_32(&str_value[8 * i]);
--dst;
}
seen_mask |= ((uint64_t)1 << idx_seen);
}
// Check that we've seen all the registers
if (~seen_mask) {
std::ostringstream oss;
oss << "Some registers were missing from print_register output. Mask: 0x"
<< std::hex << seen_mask << ".";
throw std::runtime_error(oss.str());
}
}
std::string ISSWrapper::make_tmp_path(const std::string &relative) const {
return tmpdir->path + "/" + relative;
}
bool ISSWrapper::read_child_response(std::vector<std::string> *dst) const {
char buf[256];
bool continuation = false;
for (;;) {
// fgets reads a line, or fills buf, whichever happens first. It always
// writes the terminating null, so setting the second last position to \0
// beforehand can detect whether we filled buf without needing a call to
// strlen: buf is full if and only if this gets written with something
// other than a null.
buf[sizeof buf - 2] = '\0';
if (!fgets(buf, sizeof buf, child_read_file)) {
// Failed to read from child, or EOF
return false;
}
// If buf is ".\n", and we're not continuing another line, we're done.
if (!continuation && (0 == strcmp(buf, ".\n"))) {
return true;
}
// Otherwise it's some informative response from the child: take a copy if
// dst is not null.
if (dst) {
if (continuation) {
assert(dst->size());
dst->back() += buf;
} else {
dst->push_back(std::string(buf));
}
}
// Set the continuation flag if we filled buf without a newline. Our
// "canary" value at the end will be \0 or \n if and only if we got a
// newline (or EOF) before the end of the buffer.
char canary = buf[sizeof buf - 2];
continuation = !(canary == '\0' || canary == '\n');
}
}
bool ISSWrapper::run_command(const std::string &cmd,
std::vector<std::string> *dst) const {
assert(cmd.size() > 0);
assert(cmd.back() == '\n');
fputs(cmd.c_str(), child_write_file);
fflush(child_write_file);
return read_child_response(dst);
}
bool ISSWrapper::saw_busy_cleared(std::vector<std::string> &lines) const {
// We're interested in lines that show an update to otbn.STATUS. These look
// something like this:
//
// otbn.STATUS &= ~ 0x000001 (from HW) (now 0x000000)
//
// The \n picks up the newline that we expect at the end of each line.
std::regex re("\\s*otbn\\.STATUS.*0x[0-9]+\\)\n");
bool is_cleared = false;
for (const auto &line : lines) {
if (std::regex_match(line, re)) {
// Ahah! We have a match. At this point, we can cheat because we happen
// to know that the the busy bit is bit zero, so we just need to check
// whether the last character of the hex constant is even. Since the
// regex has a fixed number (2) of characters after the hex constant, we
// can just count back from the end of the string.
char last_digit = (&line.back())[-2];
int as_num;
if ('0' <= last_digit && last_digit <= '9') {
as_num = last_digit - '0';
} else {
assert('a' <= last_digit && last_digit <= 'f');
as_num = 10 + (last_digit - 'a');
}
is_cleared = !(as_num & 1);
}
}
return is_cleared;
}