blob: 8b4e8d3be7d5b3e00057275a6ff7d35eeefd5b3d [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
<%
from reggen import gen_rtl
from reggen.access import HwAccess, SwRdAccess, SwWrAccess
from reggen.lib import get_basename
from reggen.register import Register
from reggen.multi_register import MultiRegister
num_wins = len(rb.windows)
num_wins_width = ((num_wins+1).bit_length()) - 1
num_reg_dsp = 1 if rb.all_regs else 0
num_dsp = num_wins + num_reg_dsp
regs_flat = rb.flat_regs
max_regs_char = len("{}".format(len(regs_flat) - 1))
addr_width = rb.get_addr_width()
lblock = block.name.lower()
ublock = lblock.upper()
u_mod_base = mod_base.upper()
reg2hw_t = gen_rtl.get_iface_tx_type(block, if_name, False)
hw2reg_t = gen_rtl.get_iface_tx_type(block, if_name, True)
# Calculate whether we're going to need an AW parameter. We use it if there
# are any registers (obviously). We also use it if there are any windows that
# don't start at zero and end at 1 << addr_width (see the "addr_checks"
# calculation below for where that comes from).
needs_aw = (bool(regs_flat) or
num_wins > 1 or
rb.windows and (
rb.windows[0].offset != 0 or
rb.windows[0].size_in_bytes != (1 << addr_width)))
common_data_intg_gen = 0 if rb.has_data_intg_passthru else 1
adapt_data_intg_gen = 1 if rb.has_data_intg_passthru else 0
assert common_data_intg_gen != adapt_data_intg_gen
%>
`include "prim_assert.sv"
module ${mod_name} (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
% if num_wins != 0:
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o [${num_wins}],
input tlul_pkg::tl_d2h_t tl_win_i [${num_wins}],
% endif
// To HW
% if rb.get_n_bits(["q","qe","re"]):
output ${lblock}_reg_pkg::${reg2hw_t} reg2hw, // Write
% endif
% if rb.get_n_bits(["d","de"]):
input ${lblock}_reg_pkg::${hw2reg_t} hw2reg, // Read
% endif
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import ${lblock}_reg_pkg::* ;
% if needs_aw:
localparam int AW = ${addr_width};
% endif
% if rb.all_regs:
localparam int DW = ${block.regwidth};
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
% endif
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(${common_data_intg_gen})
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
% if num_dsp == 1:
## Either no windows (and just registers) or no registers and only
## one window.
% if num_wins == 0:
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
% else:
assign tl_win_o[0] = tl_i;
assign tl_o_pre = tl_win_i[0];
% endif
% else:
tlul_pkg::tl_h2d_t tl_socket_h2d [${num_dsp}];
tlul_pkg::tl_d2h_t tl_socket_d2h [${num_dsp}];
logic [${num_wins_width}:0] reg_steer;
// socket_1n connection
% if rb.all_regs:
assign tl_reg_h2d = tl_socket_h2d[${num_wins}];
assign tl_socket_d2h[${num_wins}] = tl_reg_d2h;
% endif
% for i,t in enumerate(rb.windows):
assign tl_win_o[${i}] = tl_socket_h2d[${i}];
% if common_data_intg_gen == 0 and rb.windows[i].data_intg_passthru == False:
## If there are multiple windows, and not every window has data integrity
## passthrough, we must generate data integrity for it here.
tlul_rsp_intg_gen #(
.EnableRspIntgGen(0),
.EnableDataIntgGen(1)
) u_win${i}_data_intg_gen (
.tl_i(tl_win_i[${i}]),
.tl_o(tl_socket_d2h[${i}])
);
% else:
assign tl_socket_d2h[${i}] = tl_win_i[${i}];
% endif
% endfor
// Create Socket_1n
tlul_socket_1n #(
.N (${num_dsp}),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({${num_dsp}{1'b1}}),
.DRspPass ({${num_dsp}{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({${num_dsp}{4'h0}}),
.DRspDepth ({${num_dsp}{4'h0}})
) u_socket (
.clk_i,
.rst_ni,
.tl_h_i (tl_i),
.tl_h_o (tl_o_pre),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer = ${num_dsp-1}; // Default set to register
// TODO: Can below codes be unique case () inside ?
% for i,w in enumerate(rb.windows):
<%
base_addr = w.offset
limit_addr = w.offset + w.size_in_bytes
hi_check = 'tl_i.a_address[AW-1:0] < {}'.format(limit_addr)
addr_checks = []
if base_addr > 0:
addr_checks.append('tl_i.a_address[AW-1:0] >= {}'.format(base_addr))
if limit_addr < 2**addr_width:
addr_checks.append('tl_i.a_address[AW-1:0] < {}'.format(limit_addr))
addr_test = ' && '.join(addr_checks)
%>\
% if addr_test:
if (${addr_test}) begin
% endif
reg_steer = ${i};
% if addr_test:
end
% endif
% endfor
if (intg_err) begin
reg_steer = ${num_dsp-1};
end
end
% endif
% if rb.all_regs:
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(${adapt_data_intg_gen})
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
% for r in regs_flat:
% if len(r.fields) == 1:
${sig_gen(r.fields[0], r.name.lower(), r.hwext, r.shadowed)}\
% else:
% for f in r.fields:
${sig_gen(f, r.name.lower() + "_" + f.name.lower(), r.hwext, r.shadowed)}\
% endfor
% endif
% endfor
// Register instances
% for r in rb.all_regs:
######################## multiregister ###########################
% if isinstance(r, MultiRegister):
<%
k = 0
%>
% for sr in r.regs:
// Subregister ${k} of Multireg ${r.reg.name.lower()}
// R[${sr.name.lower()}]: V(${str(sr.hwext)})
% if len(sr.fields) == 1:
<%
f = sr.fields[0]
finst_name = sr.name.lower()
fsig_name = r.reg.name.lower() + "[%d]" % k
k = k + 1
%>
${finst_gen(f, finst_name, fsig_name, sr.hwext, sr.regwen, sr.shadowed)}
% else:
% for f in sr.fields:
<%
finst_name = sr.name.lower() + "_" + f.name.lower()
if r.is_homogeneous():
fsig_name = r.reg.name.lower() + "[%d]" % k
k = k + 1
else:
fsig_name = r.reg.name.lower() + "[%d]" % k + "." + get_basename(f.name.lower())
%>
// F[${f.name.lower()}]: ${f.bits.msb}:${f.bits.lsb}
${finst_gen(f, finst_name, fsig_name, sr.hwext, sr.regwen, sr.shadowed)}
% endfor
<%
if not r.is_homogeneous():
k += 1
%>
% endif
## for: mreg_flat
% endfor
######################## register with single field ###########################
% elif len(r.fields) == 1:
// R[${r.name.lower()}]: V(${str(r.hwext)})
<%
f = r.fields[0]
finst_name = r.name.lower()
fsig_name = r.name.lower()
%>
${finst_gen(f, finst_name, fsig_name, r.hwext, r.regwen, r.shadowed)}
######################## register with multiple fields ###########################
% else:
// R[${r.name.lower()}]: V(${str(r.hwext)})
% for f in r.fields:
<%
finst_name = r.name.lower() + "_" + f.name.lower()
fsig_name = r.name.lower() + "." + f.name.lower()
%>
// F[${f.name.lower()}]: ${f.bits.msb}:${f.bits.lsb}
${finst_gen(f, finst_name, fsig_name, r.hwext, r.regwen, r.shadowed)}
% endfor
% endif
## for: rb.all_regs
% endfor
logic [${len(regs_flat)-1}:0] addr_hit;
always_comb begin
addr_hit = '0;
% for i,r in enumerate(regs_flat):
addr_hit[${"{}".format(i).rjust(max_regs_char)}] = (reg_addr == ${ublock}_${r.name.upper()}_OFFSET);
% endfor
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
% if regs_flat:
<%
# We want to signal wr_err if reg_be (the byte enable signal) is true for
# any bytes that aren't supported by a register. That's true if a
# addr_hit[i] and a bit is set in reg_be but not in *_PERMIT[i].
wr_err_terms = ['(addr_hit[{idx}] & (|({mod}_PERMIT[{idx}] & ~reg_be)))'
.format(idx=str(i).rjust(max_regs_char),
mod=u_mod_base)
for i in range(len(regs_flat))]
wr_err_expr = (' |\n' + (' ' * 15)).join(wr_err_terms)
%>\
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
(${wr_err_expr}));
end
% else:
assign wr_error = 1'b0;
% endif\
% for i, r in enumerate(regs_flat):
% if len(r.fields) == 1:
${we_gen(r.fields[0], r.name.lower(), r.hwext, r.shadowed, i)}\
% else:
% for f in r.fields:
${we_gen(f, r.name.lower() + "_" + f.name.lower(), r.hwext, r.shadowed, i)}\
% endfor
% endif
% endfor
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
% for i, r in enumerate(regs_flat):
% if len(r.fields) == 1:
addr_hit[${i}]: begin
${rdata_gen(r.fields[0], r.name.lower())}\
end
% else:
addr_hit[${i}]: begin
% for f in r.fields:
${rdata_gen(f, r.name.lower() + "_" + f.name.lower())}\
% endfor
end
% endif
% endfor
default: begin
reg_rdata_next = '1;
end
endcase
end
% endif
// Unused signal tieoff
% if rb.all_regs:
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
% else:
// devmode_i is not used if there are no registers
logic unused_devmode;
assign unused_devmode = ^devmode_i;
% endif
% if rb.all_regs:
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
% endif
endmodule
<%def name="str_bits_sv(bits)">\
% if bits.msb != bits.lsb:
${bits.msb}:${bits.lsb}\
% else:
${bits.msb}\
% endif
</%def>\
<%def name="str_arr_sv(bits)">\
% if bits.msb != bits.lsb:
[${bits.msb-bits.lsb}:0] \
% endif
</%def>\
<%def name="sig_gen(field, sig_name, hwext, shadowed)">\
% if field.swaccess.allows_read():
logic ${str_arr_sv(field.bits)}${sig_name}_qs;
% endif
% if field.swaccess.allows_write():
logic ${str_arr_sv(field.bits)}${sig_name}_wd;
logic ${sig_name}_we;
% endif
% if (field.swaccess.allows_read() and hwext) or shadowed:
logic ${sig_name}_re;
% endif
</%def>\
<%def name="finst_gen(field, finst_name, fsig_name, hwext, regwen, shadowed)">\
% if hwext: ## if hwext, instantiate prim_subreg_ext
prim_subreg_ext #(
.DW (${field.bits.width()})
) u_${finst_name} (
% if field.swaccess.allows_read():
.re (${finst_name}_re),
% else:
.re (1'b0),
% endif
% if field.swaccess.allows_write():
% if regwen:
// qualified with register enable
.we (${finst_name}_we & ${regwen.lower()}_qs),
% else:
.we (${finst_name}_we),
% endif
.wd (${finst_name}_wd),
% else:
.we (1'b0),
.wd ('0),
% endif
% if field.hwaccess.allows_write():
.d (hw2reg.${fsig_name}.d),
% else:
.d ('0),
% endif
% if field.hwre or shadowed:
.qre (reg2hw.${fsig_name}.re),
% else:
.qre (),
% endif
% if not field.hwaccess.allows_read():
.qe (),
.q (),
% else:
% if field.hwqe:
.qe (reg2hw.${fsig_name}.qe),
% else:
.qe (),
% endif
.q (reg2hw.${fsig_name}.q ),
% endif
% if field.swaccess.allows_read():
.qs (${finst_name}_qs)
% else:
.qs ()
% endif
);
% else: ## if not hwext, instantiate prim_subreg, prim_subreg_shadow or constant assign
% if ((not field.hwaccess.allows_read() and\
not field.hwaccess.allows_write() and\
field.swaccess.swrd() == SwRdAccess.RD and\
not field.swaccess.allows_write())):
// constant-only read
assign ${finst_name}_qs = ${field.bits.width()}'h${"%x" % (field.resval or 0)};
% else: ## not hwext not constant
% if not shadowed:
prim_subreg #(
% else:
prim_subreg_shadow #(
% endif
.DW (${field.bits.width()}),
.SWACCESS("${field.swaccess.value[1].name.upper()}"),
.RESVAL (${field.bits.width()}'h${"%x" % (field.resval or 0)})
) u_${finst_name} (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
% if shadowed:
.re (${finst_name}_re),
% endif
% if field.swaccess.allows_write(): ## non-RO types
% if regwen:
// from register interface (qualified with register enable)
.we (${finst_name}_we & ${regwen.lower()}_qs),
% else:
// from register interface
.we (${finst_name}_we),
% endif
.wd (${finst_name}_wd),
% else: ## RO types
.we (1'b0),
.wd ('0 ),
% endif
// from internal hardware
% if field.hwaccess.allows_write():
.de (hw2reg.${fsig_name}.de),
.d (hw2reg.${fsig_name}.d ),
% else:
.de (1'b0),
.d ('0 ),
% endif
// to internal hardware
% if not field.hwaccess.allows_read():
.qe (),
.q (),
% else:
% if field.hwqe:
.qe (reg2hw.${fsig_name}.qe),
% else:
.qe (),
% endif
.q (reg2hw.${fsig_name}.q ),
% endif
% if not shadowed:
% if field.swaccess.allows_read():
// to register interface (read)
.qs (${finst_name}_qs)
% else:
.qs ()
% endif
% else:
% if field.swaccess.allows_read():
// to register interface (read)
.qs (${finst_name}_qs),
% else:
.qs (),
% endif
// Shadow register error conditions
.err_update (reg2hw.${fsig_name}.err_update ),
.err_storage (reg2hw.${fsig_name}.err_storage)
% endif
);
% endif ## end non-constant prim_subreg
% endif
</%def>\
<%def name="we_gen(field, sig_name, hwext, shadowed, idx)">\
<%
needs_we = field.swaccess.allows_write()
needs_re = (field.swaccess.allows_read() and hwext) or shadowed
space = '\n' if needs_we or needs_re else ''
%>\
${space}\
% if needs_we:
% if field.swaccess.swrd() != SwRdAccess.RC:
assign ${sig_name}_we = addr_hit[${idx}] & reg_we & !reg_error;
assign ${sig_name}_wd = reg_wdata[${str_bits_sv(field.bits)}];
% else:
## Generate WE based on read request, read should clear
assign ${sig_name}_we = addr_hit[${idx}] & reg_re & !reg_error;
assign ${sig_name}_wd = '1;
% endif
% endif
% if needs_re:
assign ${sig_name}_re = addr_hit[${idx}] & reg_re & !reg_error;
% endif
</%def>\
<%def name="rdata_gen(field, sig_name)">\
% if field.swaccess.allows_read():
reg_rdata_next[${str_bits_sv(field.bits)}] = ${sig_name}_qs;
% else:
reg_rdata_next[${str_bits_sv(field.bits)}] = '0;
% endif
</%def>\