| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| #include "hw/ip/aes/model/aes_modes.h" |
| #include "sw/device/lib/base/memory.h" |
| #include "sw/device/lib/base/mmio.h" |
| #include "sw/device/lib/dif/dif_aes.h" |
| #include "sw/device/lib/dif/dif_clkmgr.h" |
| #include "sw/device/lib/runtime/log.h" |
| #include "sw/device/lib/testing/aes_testutils.h" |
| #include "sw/device/lib/testing/clkmgr_testutils.h" |
| #include "sw/device/lib/testing/entropy_testutils.h" |
| #include "sw/device/lib/testing/test_framework/check.h" |
| #include "sw/device/lib/testing/test_framework/ottf_main.h" |
| |
| #include "hw/top_earlgrey/sw/autogen/top_earlgrey.h" |
| |
| #define TIMEOUT (1000 * 1000) |
| |
| // The mask share, used to mask kKey. Note that the masking should not be done |
| // manually. Software is expected to get the key in two shares right from the |
| // beginning. |
| static const uint8_t kKeyShare1[] = { |
| 0x0f, 0x1f, 0x2f, 0x3F, 0x4f, 0x5f, 0x6f, 0x7f, 0x8f, 0x9f, 0xaf, |
| 0xbf, 0xcf, 0xdf, 0xef, 0xff, 0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, |
| 0x6a, 0x7a, 0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa, |
| }; |
| |
| OTTF_DEFINE_TEST_CONFIG(); |
| static dif_clkmgr_t clkmgr; |
| static const dif_clkmgr_hintable_clock_t kAesClock = |
| kTopEarlgreyHintableClocksMainAes; |
| |
| static bool is_hintable_clock_enabled(const dif_clkmgr_t *clkmgr, |
| dif_clkmgr_hintable_clock_t clock) { |
| dif_toggle_t clock_state; |
| CHECK_DIF_OK( |
| dif_clkmgr_hintable_clock_get_enabled(clkmgr, clock, &clock_state)); |
| return clock_state == kDifToggleEnabled; |
| } |
| |
| static void initialize_clkmgr(void) { |
| mmio_region_t addr = mmio_region_from_addr(TOP_EARLGREY_CLKMGR_AON_BASE_ADDR); |
| CHECK_DIF_OK(dif_clkmgr_init(addr, &clkmgr)); |
| |
| // Get initial hint and enable for AES clock and check both are enabled. |
| dif_toggle_t clock_hint_state; |
| CHECK_DIF_OK(dif_clkmgr_hintable_clock_get_hint(&clkmgr, kAesClock, |
| &clock_hint_state)); |
| CHECK(clock_hint_state == kDifToggleEnabled); |
| CLKMGR_TESTUTILS_CHECK_CLOCK_HINT(clkmgr, kAesClock, kDifToggleEnabled); |
| } |
| |
| bool test_main(void) { |
| dif_aes_t aes; |
| |
| initialize_clkmgr(); |
| |
| // Initialise AES. |
| CHECK_DIF_OK( |
| dif_aes_init(mmio_region_from_addr(TOP_EARLGREY_AES_BASE_ADDR), &aes)); |
| CHECK_DIF_OK(dif_aes_reset(&aes)); |
| |
| // Mask the key. Note that this should not be done manually. Software is |
| // expected to get the key in two shares right from the beginning. |
| uint8_t key_share0[sizeof(kAesModesKey256)]; |
| for (int i = 0; i < sizeof(kAesModesKey256); ++i) { |
| key_share0[i] = kAesModesKey256[i] ^ kKeyShare1[i]; |
| } |
| |
| // "Convert" key share byte arrays to `dif_aes_key_share_t`. |
| dif_aes_key_share_t key; |
| memcpy(key.share0, key_share0, sizeof(key.share0)); |
| memcpy(key.share1, kKeyShare1, sizeof(key.share1)); |
| |
| // Setup ECB encryption transaction. |
| dif_aes_transaction_t transaction = { |
| .operation = kDifAesOperationEncrypt, |
| .mode = kDifAesModeEcb, |
| .key_len = kDifAesKey256, |
| .key_provider = kDifAesKeySoftwareProvided, |
| .mask_reseeding = kDifAesReseedPerBlock, |
| .manual_operation = kDifAesManualOperationManual, |
| .reseed_on_key_change = false, |
| .ctrl_aux_lock = false, |
| }; |
| |
| // With the AES unit idle, write the AES clk hint to 0 within clkmgr to |
| // indicate AES clk can be gated and verify that the AES clk hint status |
| // within clkmgr reads 0 (AES is disabled). |
| CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT( |
| clkmgr, kAesClock, kDifToggleDisabled, kDifToggleDisabled); |
| |
| // Write the AES clk hint to 1 within clkmgr to indicate AES clk can be |
| // enabled. |
| CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT( |
| clkmgr, kAesClock, kDifToggleEnabled, kDifToggleEnabled); |
| |
| // Initiate an AES operation with a known key, plain text and digest, write |
| // AES clk hint to 0 and verify that the AES clk hint status within clkmgr now |
| // reads 1 (AES is enabled), before the AES operation is complete. |
| CHECK_DIF_OK(dif_aes_start(&aes, &transaction, &key, NULL)); |
| |
| // "Convert" plain data byte arrays to `dif_aes_data_t`. |
| dif_aes_data_t in_data_plain; |
| memcpy(in_data_plain.data, kAesModesPlainText, sizeof(in_data_plain.data)); |
| |
| // Load the plain text to trigger the encryption operation. |
| AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusInputReady, true, TIMEOUT); |
| CHECK_DIF_OK(dif_aes_load_data(&aes, in_data_plain)); |
| |
| // Write the PRNG_RESEED bit to reseed the internal state of the PRNG. |
| CHECK_DIF_OK(dif_aes_trigger(&aes, kDifAesTriggerPrngReseed)); |
| CHECK_DIF_OK(dif_aes_trigger(&aes, kDifAesTriggerStart)); |
| CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT( |
| clkmgr, kAesClock, kDifToggleDisabled, kDifToggleEnabled); |
| |
| // This is a bit awkward, but when the AES finishes the operation the clock |
| // will be gated as the clock hint has requested and the AES registers can't |
| // be read. So the safest way to check whether the AES has finished is by |
| // checking that the clock is not gated. |
| IBEX_SPIN_FOR(!is_hintable_clock_enabled(&clkmgr, kAesClock), TIMEOUT); |
| |
| // After the AES operation is complete verify that the AES clk hint status |
| // within clkmgr now reads 0 again (AES is idle). |
| CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT( |
| clkmgr, kAesClock, kDifToggleDisabled, kDifToggleDisabled); |
| |
| // Write the AES clk hint to 1, read and check the AES output for |
| // correctness. |
| CLKMGR_TESTUTILS_SET_AND_CHECK_CLOCK_HINT( |
| clkmgr, kAesClock, kDifToggleEnabled, kDifToggleEnabled); |
| dif_aes_data_t out_data; |
| CHECK_DIF_OK(dif_aes_read_output(&aes, &out_data)); |
| |
| // Finish the ECB encryption transaction. |
| CHECK_DIF_OK(dif_aes_end(&aes)); |
| CHECK_ARRAYS_EQ((uint8_t *)out_data.data, kAesModesCipherTextEcb256, |
| sizeof(out_data.data)); |
| |
| return true; |
| } |