blob: 3ec7e84ab51324a53b77dc7ad550a300ff6fdd72 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module pwrmgr_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output pwrmgr_reg_pkg::pwrmgr_reg2hw_t reg2hw, // Write
input pwrmgr_reg_pkg::pwrmgr_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import pwrmgr_reg_pkg::* ;
localparam int AW = 6;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [13:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(14)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_we;
logic intr_state_qs;
logic intr_state_wd;
logic intr_enable_we;
logic intr_enable_qs;
logic intr_enable_wd;
logic intr_test_we;
logic intr_test_wd;
logic ctrl_cfg_regwen_re;
logic ctrl_cfg_regwen_qs;
logic control_we;
logic control_low_power_hint_qs;
logic control_low_power_hint_wd;
logic control_core_clk_en_qs;
logic control_core_clk_en_wd;
logic control_io_clk_en_qs;
logic control_io_clk_en_wd;
logic control_usb_clk_en_lp_qs;
logic control_usb_clk_en_lp_wd;
logic control_usb_clk_en_active_qs;
logic control_usb_clk_en_active_wd;
logic control_main_pd_n_qs;
logic control_main_pd_n_wd;
logic cfg_cdc_sync_we;
logic cfg_cdc_sync_qs;
logic cfg_cdc_sync_wd;
logic wakeup_en_regwen_we;
logic wakeup_en_regwen_qs;
logic wakeup_en_regwen_wd;
logic wakeup_en_we;
logic wakeup_en_qs;
logic wakeup_en_wd;
logic wake_status_qs;
logic reset_en_regwen_we;
logic reset_en_regwen_qs;
logic reset_en_regwen_wd;
logic reset_en_we;
logic reset_en_qs;
logic reset_en_wd;
logic reset_status_qs;
logic wake_info_capture_dis_we;
logic wake_info_capture_dis_qs;
logic wake_info_capture_dis_wd;
logic wake_info_re;
logic wake_info_we;
logic wake_info_reasons_qs;
logic wake_info_reasons_wd;
logic wake_info_fall_through_qs;
logic wake_info_fall_through_wd;
logic wake_info_abort_qs;
logic wake_info_abort_wd;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q),
.ds (),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q),
.ds (),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
logic intr_test_qe;
logic [0:0] intr_test_flds_we;
assign intr_test_qe = &intr_test_flds_we;
prim_subreg_ext #(
.DW (1)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[0]),
.q (reg2hw.intr_test.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.qe = intr_test_qe;
// R[ctrl_cfg_regwen]: V(True)
prim_subreg_ext #(
.DW (1)
) u_ctrl_cfg_regwen (
.re (ctrl_cfg_regwen_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.ctrl_cfg_regwen.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (ctrl_cfg_regwen_qs)
);
// R[control]: V(False)
// Create REGWEN-gated WE signal
logic control_gated_we;
assign control_gated_we = control_we & ctrl_cfg_regwen_qs;
// F[low_power_hint]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_control_low_power_hint (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (control_gated_we),
.wd (control_low_power_hint_wd),
// from internal hardware
.de (hw2reg.control.low_power_hint.de),
.d (hw2reg.control.low_power_hint.d),
// to internal hardware
.qe (),
.q (reg2hw.control.low_power_hint.q),
.ds (),
// to register interface (read)
.qs (control_low_power_hint_qs)
);
// F[core_clk_en]: 4:4
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_control_core_clk_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (control_gated_we),
.wd (control_core_clk_en_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.control.core_clk_en.q),
.ds (),
// to register interface (read)
.qs (control_core_clk_en_qs)
);
// F[io_clk_en]: 5:5
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_control_io_clk_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (control_gated_we),
.wd (control_io_clk_en_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.control.io_clk_en.q),
.ds (),
// to register interface (read)
.qs (control_io_clk_en_qs)
);
// F[usb_clk_en_lp]: 6:6
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_control_usb_clk_en_lp (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (control_gated_we),
.wd (control_usb_clk_en_lp_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.control.usb_clk_en_lp.q),
.ds (),
// to register interface (read)
.qs (control_usb_clk_en_lp_qs)
);
// F[usb_clk_en_active]: 7:7
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h1)
) u_control_usb_clk_en_active (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (control_gated_we),
.wd (control_usb_clk_en_active_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.control.usb_clk_en_active.q),
.ds (),
// to register interface (read)
.qs (control_usb_clk_en_active_qs)
);
// F[main_pd_n]: 8:8
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h1)
) u_control_main_pd_n (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (control_gated_we),
.wd (control_main_pd_n_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.control.main_pd_n.q),
.ds (),
// to register interface (read)
.qs (control_main_pd_n_qs)
);
// R[cfg_cdc_sync]: V(False)
logic cfg_cdc_sync_qe;
logic [0:0] cfg_cdc_sync_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_cfg_cdc_sync0_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&cfg_cdc_sync_flds_we),
.q_o(cfg_cdc_sync_qe)
);
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_cfg_cdc_sync (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_cdc_sync_we),
.wd (cfg_cdc_sync_wd),
// from internal hardware
.de (hw2reg.cfg_cdc_sync.de),
.d (hw2reg.cfg_cdc_sync.d),
// to internal hardware
.qe (cfg_cdc_sync_flds_we[0]),
.q (reg2hw.cfg_cdc_sync.q),
.ds (),
// to register interface (read)
.qs (cfg_cdc_sync_qs)
);
assign reg2hw.cfg_cdc_sync.qe = cfg_cdc_sync_qe;
// R[wakeup_en_regwen]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_wakeup_en_regwen (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (wakeup_en_regwen_we),
.wd (wakeup_en_regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (wakeup_en_regwen_qs)
);
// Subregister 0 of Multireg wakeup_en
// R[wakeup_en]: V(False)
// Create REGWEN-gated WE signal
logic wakeup_en_gated_we;
assign wakeup_en_gated_we = wakeup_en_we & wakeup_en_regwen_qs;
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_wakeup_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (wakeup_en_gated_we),
.wd (wakeup_en_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.wakeup_en[0].q),
.ds (),
// to register interface (read)
.qs (wakeup_en_qs)
);
// Subregister 0 of Multireg wake_status
// R[wake_status]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_wake_status (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.wake_status[0].de),
.d (hw2reg.wake_status[0].d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (wake_status_qs)
);
// R[reset_en_regwen]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_reset_en_regwen (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (reset_en_regwen_we),
.wd (reset_en_regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (reset_en_regwen_qs)
);
// Subregister 0 of Multireg reset_en
// R[reset_en]: V(False)
// Create REGWEN-gated WE signal
logic reset_en_gated_we;
assign reset_en_gated_we = reset_en_we & reset_en_regwen_qs;
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_reset_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (reset_en_gated_we),
.wd (reset_en_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.reset_en[0].q),
.ds (),
// to register interface (read)
.qs (reset_en_qs)
);
// Subregister 0 of Multireg reset_status
// R[reset_status]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_reset_status (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.reset_status[0].de),
.d (hw2reg.reset_status[0].d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (reset_status_qs)
);
// R[wake_info_capture_dis]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_wake_info_capture_dis (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (wake_info_capture_dis_we),
.wd (wake_info_capture_dis_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.wake_info_capture_dis.q),
.ds (),
// to register interface (read)
.qs (wake_info_capture_dis_qs)
);
// R[wake_info]: V(True)
logic wake_info_qe;
logic [2:0] wake_info_flds_we;
assign wake_info_qe = &wake_info_flds_we;
// F[reasons]: 0:0
prim_subreg_ext #(
.DW (1)
) u_wake_info_reasons (
.re (wake_info_re),
.we (wake_info_we),
.wd (wake_info_reasons_wd),
.d (hw2reg.wake_info.reasons.d),
.qre (),
.qe (wake_info_flds_we[0]),
.q (reg2hw.wake_info.reasons.q),
.ds (),
.qs (wake_info_reasons_qs)
);
assign reg2hw.wake_info.reasons.qe = wake_info_qe;
// F[fall_through]: 1:1
prim_subreg_ext #(
.DW (1)
) u_wake_info_fall_through (
.re (wake_info_re),
.we (wake_info_we),
.wd (wake_info_fall_through_wd),
.d (hw2reg.wake_info.fall_through.d),
.qre (),
.qe (wake_info_flds_we[1]),
.q (reg2hw.wake_info.fall_through.q),
.ds (),
.qs (wake_info_fall_through_qs)
);
assign reg2hw.wake_info.fall_through.qe = wake_info_qe;
// F[abort]: 2:2
prim_subreg_ext #(
.DW (1)
) u_wake_info_abort (
.re (wake_info_re),
.we (wake_info_we),
.wd (wake_info_abort_wd),
.d (hw2reg.wake_info.abort.d),
.qre (),
.qe (wake_info_flds_we[2]),
.q (reg2hw.wake_info.abort.q),
.ds (),
.qs (wake_info_abort_qs)
);
assign reg2hw.wake_info.abort.qe = wake_info_qe;
logic [13:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == PWRMGR_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == PWRMGR_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == PWRMGR_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == PWRMGR_CTRL_CFG_REGWEN_OFFSET);
addr_hit[ 4] = (reg_addr == PWRMGR_CONTROL_OFFSET);
addr_hit[ 5] = (reg_addr == PWRMGR_CFG_CDC_SYNC_OFFSET);
addr_hit[ 6] = (reg_addr == PWRMGR_WAKEUP_EN_REGWEN_OFFSET);
addr_hit[ 7] = (reg_addr == PWRMGR_WAKEUP_EN_OFFSET);
addr_hit[ 8] = (reg_addr == PWRMGR_WAKE_STATUS_OFFSET);
addr_hit[ 9] = (reg_addr == PWRMGR_RESET_EN_REGWEN_OFFSET);
addr_hit[10] = (reg_addr == PWRMGR_RESET_EN_OFFSET);
addr_hit[11] = (reg_addr == PWRMGR_RESET_STATUS_OFFSET);
addr_hit[12] = (reg_addr == PWRMGR_WAKE_INFO_CAPTURE_DIS_OFFSET);
addr_hit[13] = (reg_addr == PWRMGR_WAKE_INFO_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(PWRMGR_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(PWRMGR_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(PWRMGR_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(PWRMGR_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(PWRMGR_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(PWRMGR_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(PWRMGR_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(PWRMGR_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(PWRMGR_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(PWRMGR_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(PWRMGR_PERMIT[10] & ~reg_be))) |
(addr_hit[11] & (|(PWRMGR_PERMIT[11] & ~reg_be))) |
(addr_hit[12] & (|(PWRMGR_PERMIT[12] & ~reg_be))) |
(addr_hit[13] & (|(PWRMGR_PERMIT[13] & ~reg_be)))));
end
// Generate write-enables
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_wd = reg_wdata[0];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_wd = reg_wdata[0];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_wd = reg_wdata[0];
assign ctrl_cfg_regwen_re = addr_hit[3] & reg_re & !reg_error;
assign control_we = addr_hit[4] & reg_we & !reg_error;
assign control_low_power_hint_wd = reg_wdata[0];
assign control_core_clk_en_wd = reg_wdata[4];
assign control_io_clk_en_wd = reg_wdata[5];
assign control_usb_clk_en_lp_wd = reg_wdata[6];
assign control_usb_clk_en_active_wd = reg_wdata[7];
assign control_main_pd_n_wd = reg_wdata[8];
assign cfg_cdc_sync_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_cdc_sync_wd = reg_wdata[0];
assign wakeup_en_regwen_we = addr_hit[6] & reg_we & !reg_error;
assign wakeup_en_regwen_wd = reg_wdata[0];
assign wakeup_en_we = addr_hit[7] & reg_we & !reg_error;
assign wakeup_en_wd = reg_wdata[0];
assign reset_en_regwen_we = addr_hit[9] & reg_we & !reg_error;
assign reset_en_regwen_wd = reg_wdata[0];
assign reset_en_we = addr_hit[10] & reg_we & !reg_error;
assign reset_en_wd = reg_wdata[0];
assign wake_info_capture_dis_we = addr_hit[12] & reg_we & !reg_error;
assign wake_info_capture_dis_wd = reg_wdata[0];
assign wake_info_re = addr_hit[13] & reg_re & !reg_error;
assign wake_info_we = addr_hit[13] & reg_we & !reg_error;
assign wake_info_reasons_wd = reg_wdata[0];
assign wake_info_fall_through_wd = reg_wdata[1];
assign wake_info_abort_wd = reg_wdata[2];
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = intr_state_we;
reg_we_check[1] = intr_enable_we;
reg_we_check[2] = intr_test_we;
reg_we_check[3] = 1'b0;
reg_we_check[4] = control_gated_we;
reg_we_check[5] = cfg_cdc_sync_we;
reg_we_check[6] = wakeup_en_regwen_we;
reg_we_check[7] = wakeup_en_gated_we;
reg_we_check[8] = 1'b0;
reg_we_check[9] = reset_en_regwen_we;
reg_we_check[10] = reset_en_gated_we;
reg_we_check[11] = 1'b0;
reg_we_check[12] = wake_info_capture_dis_we;
reg_we_check[13] = wake_info_we;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = ctrl_cfg_regwen_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = control_low_power_hint_qs;
reg_rdata_next[4] = control_core_clk_en_qs;
reg_rdata_next[5] = control_io_clk_en_qs;
reg_rdata_next[6] = control_usb_clk_en_lp_qs;
reg_rdata_next[7] = control_usb_clk_en_active_qs;
reg_rdata_next[8] = control_main_pd_n_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = cfg_cdc_sync_qs;
end
addr_hit[6]: begin
reg_rdata_next[0] = wakeup_en_regwen_qs;
end
addr_hit[7]: begin
reg_rdata_next[0] = wakeup_en_qs;
end
addr_hit[8]: begin
reg_rdata_next[0] = wake_status_qs;
end
addr_hit[9]: begin
reg_rdata_next[0] = reset_en_regwen_qs;
end
addr_hit[10]: begin
reg_rdata_next[0] = reset_en_qs;
end
addr_hit[11]: begin
reg_rdata_next[0] = reset_status_qs;
end
addr_hit[12]: begin
reg_rdata_next[0] = wake_info_capture_dis_qs;
end
addr_hit[13]: begin
reg_rdata_next[0] = wake_info_reasons_qs;
reg_rdata_next[1] = wake_info_fall_through_qs;
reg_rdata_next[2] = wake_info_abort_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule