blob: 5a3a95225a7006eaf425ff6599d800cb7150d136 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module otbn_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o [2],
input tlul_pkg::tl_d2h_t tl_win_i [2],
// To HW
output otbn_reg_pkg::otbn_reg2hw_t reg2hw, // Write
input otbn_reg_pkg::otbn_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import otbn_reg_pkg::* ;
localparam int AW = 16;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [10:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(11)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(0)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
tlul_pkg::tl_h2d_t tl_socket_h2d [3];
tlul_pkg::tl_d2h_t tl_socket_d2h [3];
logic [1:0] reg_steer;
// socket_1n connection
assign tl_reg_h2d = tl_socket_h2d[2];
assign tl_socket_d2h[2] = tl_reg_d2h;
assign tl_win_o[0] = tl_socket_h2d[0];
assign tl_socket_d2h[0] = tl_win_i[0];
assign tl_win_o[1] = tl_socket_h2d[1];
assign tl_socket_d2h[1] = tl_win_i[1];
// Create Socket_1n
tlul_socket_1n #(
.N (3),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({3{1'b1}}),
.DRspPass ({3{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({3{4'h0}}),
.DRspDepth ({3{4'h0}}),
.ExplicitErrs (1'b0)
) u_socket (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_h_i (tl_i),
.tl_h_o (tl_o_pre),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer =
tl_i.a_address[AW-1:0] inside {[16384:20479]} ? 2'd0 :
tl_i.a_address[AW-1:0] inside {[32768:35839]} ? 2'd1 :
// Default set to register
2'd2;
// Override this in case of an integrity error
if (intg_err) begin
reg_steer = 2'd2;
end
end
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(1)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_we;
logic intr_state_qs;
logic intr_state_wd;
logic intr_enable_we;
logic intr_enable_qs;
logic intr_enable_wd;
logic intr_test_we;
logic intr_test_wd;
logic alert_test_we;
logic alert_test_fatal_wd;
logic alert_test_recov_wd;
logic cmd_we;
logic [7:0] cmd_wd;
logic ctrl_re;
logic ctrl_we;
logic ctrl_qs;
logic ctrl_wd;
logic [7:0] status_qs;
logic err_bits_re;
logic err_bits_we;
logic err_bits_bad_data_addr_qs;
logic err_bits_bad_data_addr_wd;
logic err_bits_bad_insn_addr_qs;
logic err_bits_bad_insn_addr_wd;
logic err_bits_call_stack_qs;
logic err_bits_call_stack_wd;
logic err_bits_illegal_insn_qs;
logic err_bits_illegal_insn_wd;
logic err_bits_loop_qs;
logic err_bits_loop_wd;
logic err_bits_key_invalid_qs;
logic err_bits_key_invalid_wd;
logic err_bits_rnd_rep_chk_fail_qs;
logic err_bits_rnd_rep_chk_fail_wd;
logic err_bits_rnd_fips_chk_fail_qs;
logic err_bits_rnd_fips_chk_fail_wd;
logic err_bits_imem_intg_violation_qs;
logic err_bits_imem_intg_violation_wd;
logic err_bits_dmem_intg_violation_qs;
logic err_bits_dmem_intg_violation_wd;
logic err_bits_reg_intg_violation_qs;
logic err_bits_reg_intg_violation_wd;
logic err_bits_bus_intg_violation_qs;
logic err_bits_bus_intg_violation_wd;
logic err_bits_bad_internal_state_qs;
logic err_bits_bad_internal_state_wd;
logic err_bits_illegal_bus_access_qs;
logic err_bits_illegal_bus_access_wd;
logic err_bits_lifecycle_escalation_qs;
logic err_bits_lifecycle_escalation_wd;
logic err_bits_fatal_software_qs;
logic err_bits_fatal_software_wd;
logic fatal_alert_cause_imem_intg_violation_qs;
logic fatal_alert_cause_dmem_intg_violation_qs;
logic fatal_alert_cause_reg_intg_violation_qs;
logic fatal_alert_cause_bus_intg_violation_qs;
logic fatal_alert_cause_bad_internal_state_qs;
logic fatal_alert_cause_illegal_bus_access_qs;
logic fatal_alert_cause_lifecycle_escalation_qs;
logic fatal_alert_cause_fatal_software_qs;
logic insn_cnt_re;
logic insn_cnt_we;
logic [31:0] insn_cnt_qs;
logic [31:0] insn_cnt_wd;
logic load_checksum_re;
logic load_checksum_we;
logic [31:0] load_checksum_qs;
logic [31:0] load_checksum_wd;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q),
.ds (),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q),
.ds (),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
logic intr_test_qe;
logic [0:0] intr_test_flds_we;
assign intr_test_qe = &intr_test_flds_we;
prim_subreg_ext #(
.DW (1)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[0]),
.q (reg2hw.intr_test.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.qe = intr_test_qe;
// R[alert_test]: V(True)
logic alert_test_qe;
logic [1:0] alert_test_flds_we;
assign alert_test_qe = &alert_test_flds_we;
// F[fatal]: 0:0
prim_subreg_ext #(
.DW (1)
) u_alert_test_fatal (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_fatal_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[0]),
.q (reg2hw.alert_test.fatal.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.fatal.qe = alert_test_qe;
// F[recov]: 1:1
prim_subreg_ext #(
.DW (1)
) u_alert_test_recov (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_recov_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[1]),
.q (reg2hw.alert_test.recov.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.recov.qe = alert_test_qe;
// R[cmd]: V(True)
logic cmd_qe;
logic [0:0] cmd_flds_we;
assign cmd_qe = &cmd_flds_we;
prim_subreg_ext #(
.DW (8)
) u_cmd (
.re (1'b0),
.we (cmd_we),
.wd (cmd_wd),
.d ('0),
.qre (),
.qe (cmd_flds_we[0]),
.q (reg2hw.cmd.q),
.ds (),
.qs ()
);
assign reg2hw.cmd.qe = cmd_qe;
// R[ctrl]: V(True)
logic ctrl_qe;
logic [0:0] ctrl_flds_we;
assign ctrl_qe = &ctrl_flds_we;
prim_subreg_ext #(
.DW (1)
) u_ctrl (
.re (ctrl_re),
.we (ctrl_we),
.wd (ctrl_wd),
.d (hw2reg.ctrl.d),
.qre (),
.qe (ctrl_flds_we[0]),
.q (reg2hw.ctrl.q),
.ds (),
.qs (ctrl_qs)
);
assign reg2hw.ctrl.qe = ctrl_qe;
// R[status]: V(False)
prim_subreg #(
.DW (8),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (8'h4)
) u_status (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.de),
.d (hw2reg.status.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (status_qs)
);
// R[err_bits]: V(True)
logic err_bits_qe;
logic [15:0] err_bits_flds_we;
assign err_bits_qe = &err_bits_flds_we;
// F[bad_data_addr]: 0:0
prim_subreg_ext #(
.DW (1)
) u_err_bits_bad_data_addr (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_bad_data_addr_wd),
.d (hw2reg.err_bits.bad_data_addr.d),
.qre (),
.qe (err_bits_flds_we[0]),
.q (reg2hw.err_bits.bad_data_addr.q),
.ds (),
.qs (err_bits_bad_data_addr_qs)
);
assign reg2hw.err_bits.bad_data_addr.qe = err_bits_qe;
// F[bad_insn_addr]: 1:1
prim_subreg_ext #(
.DW (1)
) u_err_bits_bad_insn_addr (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_bad_insn_addr_wd),
.d (hw2reg.err_bits.bad_insn_addr.d),
.qre (),
.qe (err_bits_flds_we[1]),
.q (reg2hw.err_bits.bad_insn_addr.q),
.ds (),
.qs (err_bits_bad_insn_addr_qs)
);
assign reg2hw.err_bits.bad_insn_addr.qe = err_bits_qe;
// F[call_stack]: 2:2
prim_subreg_ext #(
.DW (1)
) u_err_bits_call_stack (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_call_stack_wd),
.d (hw2reg.err_bits.call_stack.d),
.qre (),
.qe (err_bits_flds_we[2]),
.q (reg2hw.err_bits.call_stack.q),
.ds (),
.qs (err_bits_call_stack_qs)
);
assign reg2hw.err_bits.call_stack.qe = err_bits_qe;
// F[illegal_insn]: 3:3
prim_subreg_ext #(
.DW (1)
) u_err_bits_illegal_insn (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_illegal_insn_wd),
.d (hw2reg.err_bits.illegal_insn.d),
.qre (),
.qe (err_bits_flds_we[3]),
.q (reg2hw.err_bits.illegal_insn.q),
.ds (),
.qs (err_bits_illegal_insn_qs)
);
assign reg2hw.err_bits.illegal_insn.qe = err_bits_qe;
// F[loop]: 4:4
prim_subreg_ext #(
.DW (1)
) u_err_bits_loop (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_loop_wd),
.d (hw2reg.err_bits.loop.d),
.qre (),
.qe (err_bits_flds_we[4]),
.q (reg2hw.err_bits.loop.q),
.ds (),
.qs (err_bits_loop_qs)
);
assign reg2hw.err_bits.loop.qe = err_bits_qe;
// F[key_invalid]: 5:5
prim_subreg_ext #(
.DW (1)
) u_err_bits_key_invalid (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_key_invalid_wd),
.d (hw2reg.err_bits.key_invalid.d),
.qre (),
.qe (err_bits_flds_we[5]),
.q (reg2hw.err_bits.key_invalid.q),
.ds (),
.qs (err_bits_key_invalid_qs)
);
assign reg2hw.err_bits.key_invalid.qe = err_bits_qe;
// F[rnd_rep_chk_fail]: 6:6
prim_subreg_ext #(
.DW (1)
) u_err_bits_rnd_rep_chk_fail (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_rnd_rep_chk_fail_wd),
.d (hw2reg.err_bits.rnd_rep_chk_fail.d),
.qre (),
.qe (err_bits_flds_we[6]),
.q (reg2hw.err_bits.rnd_rep_chk_fail.q),
.ds (),
.qs (err_bits_rnd_rep_chk_fail_qs)
);
assign reg2hw.err_bits.rnd_rep_chk_fail.qe = err_bits_qe;
// F[rnd_fips_chk_fail]: 7:7
prim_subreg_ext #(
.DW (1)
) u_err_bits_rnd_fips_chk_fail (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_rnd_fips_chk_fail_wd),
.d (hw2reg.err_bits.rnd_fips_chk_fail.d),
.qre (),
.qe (err_bits_flds_we[7]),
.q (reg2hw.err_bits.rnd_fips_chk_fail.q),
.ds (),
.qs (err_bits_rnd_fips_chk_fail_qs)
);
assign reg2hw.err_bits.rnd_fips_chk_fail.qe = err_bits_qe;
// F[imem_intg_violation]: 16:16
prim_subreg_ext #(
.DW (1)
) u_err_bits_imem_intg_violation (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_imem_intg_violation_wd),
.d (hw2reg.err_bits.imem_intg_violation.d),
.qre (),
.qe (err_bits_flds_we[8]),
.q (reg2hw.err_bits.imem_intg_violation.q),
.ds (),
.qs (err_bits_imem_intg_violation_qs)
);
assign reg2hw.err_bits.imem_intg_violation.qe = err_bits_qe;
// F[dmem_intg_violation]: 17:17
prim_subreg_ext #(
.DW (1)
) u_err_bits_dmem_intg_violation (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_dmem_intg_violation_wd),
.d (hw2reg.err_bits.dmem_intg_violation.d),
.qre (),
.qe (err_bits_flds_we[9]),
.q (reg2hw.err_bits.dmem_intg_violation.q),
.ds (),
.qs (err_bits_dmem_intg_violation_qs)
);
assign reg2hw.err_bits.dmem_intg_violation.qe = err_bits_qe;
// F[reg_intg_violation]: 18:18
prim_subreg_ext #(
.DW (1)
) u_err_bits_reg_intg_violation (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_reg_intg_violation_wd),
.d (hw2reg.err_bits.reg_intg_violation.d),
.qre (),
.qe (err_bits_flds_we[10]),
.q (reg2hw.err_bits.reg_intg_violation.q),
.ds (),
.qs (err_bits_reg_intg_violation_qs)
);
assign reg2hw.err_bits.reg_intg_violation.qe = err_bits_qe;
// F[bus_intg_violation]: 19:19
prim_subreg_ext #(
.DW (1)
) u_err_bits_bus_intg_violation (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_bus_intg_violation_wd),
.d (hw2reg.err_bits.bus_intg_violation.d),
.qre (),
.qe (err_bits_flds_we[11]),
.q (reg2hw.err_bits.bus_intg_violation.q),
.ds (),
.qs (err_bits_bus_intg_violation_qs)
);
assign reg2hw.err_bits.bus_intg_violation.qe = err_bits_qe;
// F[bad_internal_state]: 20:20
prim_subreg_ext #(
.DW (1)
) u_err_bits_bad_internal_state (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_bad_internal_state_wd),
.d (hw2reg.err_bits.bad_internal_state.d),
.qre (),
.qe (err_bits_flds_we[12]),
.q (reg2hw.err_bits.bad_internal_state.q),
.ds (),
.qs (err_bits_bad_internal_state_qs)
);
assign reg2hw.err_bits.bad_internal_state.qe = err_bits_qe;
// F[illegal_bus_access]: 21:21
prim_subreg_ext #(
.DW (1)
) u_err_bits_illegal_bus_access (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_illegal_bus_access_wd),
.d (hw2reg.err_bits.illegal_bus_access.d),
.qre (),
.qe (err_bits_flds_we[13]),
.q (reg2hw.err_bits.illegal_bus_access.q),
.ds (),
.qs (err_bits_illegal_bus_access_qs)
);
assign reg2hw.err_bits.illegal_bus_access.qe = err_bits_qe;
// F[lifecycle_escalation]: 22:22
prim_subreg_ext #(
.DW (1)
) u_err_bits_lifecycle_escalation (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_lifecycle_escalation_wd),
.d (hw2reg.err_bits.lifecycle_escalation.d),
.qre (),
.qe (err_bits_flds_we[14]),
.q (reg2hw.err_bits.lifecycle_escalation.q),
.ds (),
.qs (err_bits_lifecycle_escalation_qs)
);
assign reg2hw.err_bits.lifecycle_escalation.qe = err_bits_qe;
// F[fatal_software]: 23:23
prim_subreg_ext #(
.DW (1)
) u_err_bits_fatal_software (
.re (err_bits_re),
.we (err_bits_we),
.wd (err_bits_fatal_software_wd),
.d (hw2reg.err_bits.fatal_software.d),
.qre (),
.qe (err_bits_flds_we[15]),
.q (reg2hw.err_bits.fatal_software.q),
.ds (),
.qs (err_bits_fatal_software_qs)
);
assign reg2hw.err_bits.fatal_software.qe = err_bits_qe;
// R[fatal_alert_cause]: V(False)
// F[imem_intg_violation]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_imem_intg_violation (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.imem_intg_violation.de),
.d (hw2reg.fatal_alert_cause.imem_intg_violation.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_imem_intg_violation_qs)
);
// F[dmem_intg_violation]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_dmem_intg_violation (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.dmem_intg_violation.de),
.d (hw2reg.fatal_alert_cause.dmem_intg_violation.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_dmem_intg_violation_qs)
);
// F[reg_intg_violation]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_reg_intg_violation (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.reg_intg_violation.de),
.d (hw2reg.fatal_alert_cause.reg_intg_violation.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_reg_intg_violation_qs)
);
// F[bus_intg_violation]: 3:3
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_bus_intg_violation (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.bus_intg_violation.de),
.d (hw2reg.fatal_alert_cause.bus_intg_violation.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_bus_intg_violation_qs)
);
// F[bad_internal_state]: 4:4
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_bad_internal_state (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.bad_internal_state.de),
.d (hw2reg.fatal_alert_cause.bad_internal_state.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_bad_internal_state_qs)
);
// F[illegal_bus_access]: 5:5
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_illegal_bus_access (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.illegal_bus_access.de),
.d (hw2reg.fatal_alert_cause.illegal_bus_access.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_illegal_bus_access_qs)
);
// F[lifecycle_escalation]: 6:6
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_lifecycle_escalation (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.lifecycle_escalation.de),
.d (hw2reg.fatal_alert_cause.lifecycle_escalation.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_lifecycle_escalation_qs)
);
// F[fatal_software]: 7:7
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_fatal_alert_cause_fatal_software (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.fatal_software.de),
.d (hw2reg.fatal_alert_cause.fatal_software.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (fatal_alert_cause_fatal_software_qs)
);
// R[insn_cnt]: V(True)
logic insn_cnt_qe;
logic [0:0] insn_cnt_flds_we;
assign insn_cnt_qe = &insn_cnt_flds_we;
prim_subreg_ext #(
.DW (32)
) u_insn_cnt (
.re (insn_cnt_re),
.we (insn_cnt_we),
.wd (insn_cnt_wd),
.d (hw2reg.insn_cnt.d),
.qre (),
.qe (insn_cnt_flds_we[0]),
.q (reg2hw.insn_cnt.q),
.ds (),
.qs (insn_cnt_qs)
);
assign reg2hw.insn_cnt.qe = insn_cnt_qe;
// R[load_checksum]: V(True)
logic load_checksum_qe;
logic [0:0] load_checksum_flds_we;
assign load_checksum_qe = &load_checksum_flds_we;
prim_subreg_ext #(
.DW (32)
) u_load_checksum (
.re (load_checksum_re),
.we (load_checksum_we),
.wd (load_checksum_wd),
.d (hw2reg.load_checksum.d),
.qre (),
.qe (load_checksum_flds_we[0]),
.q (reg2hw.load_checksum.q),
.ds (),
.qs (load_checksum_qs)
);
assign reg2hw.load_checksum.qe = load_checksum_qe;
logic [10:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == OTBN_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == OTBN_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == OTBN_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == OTBN_ALERT_TEST_OFFSET);
addr_hit[ 4] = (reg_addr == OTBN_CMD_OFFSET);
addr_hit[ 5] = (reg_addr == OTBN_CTRL_OFFSET);
addr_hit[ 6] = (reg_addr == OTBN_STATUS_OFFSET);
addr_hit[ 7] = (reg_addr == OTBN_ERR_BITS_OFFSET);
addr_hit[ 8] = (reg_addr == OTBN_FATAL_ALERT_CAUSE_OFFSET);
addr_hit[ 9] = (reg_addr == OTBN_INSN_CNT_OFFSET);
addr_hit[10] = (reg_addr == OTBN_LOAD_CHECKSUM_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(OTBN_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(OTBN_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(OTBN_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(OTBN_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(OTBN_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(OTBN_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(OTBN_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(OTBN_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(OTBN_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(OTBN_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(OTBN_PERMIT[10] & ~reg_be)))));
end
// Generate write-enables
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_wd = reg_wdata[0];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_wd = reg_wdata[0];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_wd = reg_wdata[0];
assign alert_test_we = addr_hit[3] & reg_we & !reg_error;
assign alert_test_fatal_wd = reg_wdata[0];
assign alert_test_recov_wd = reg_wdata[1];
assign cmd_we = addr_hit[4] & reg_we & !reg_error;
assign cmd_wd = reg_wdata[7:0];
assign ctrl_re = addr_hit[5] & reg_re & !reg_error;
assign ctrl_we = addr_hit[5] & reg_we & !reg_error;
assign ctrl_wd = reg_wdata[0];
assign err_bits_re = addr_hit[7] & reg_re & !reg_error;
assign err_bits_we = addr_hit[7] & reg_we & !reg_error;
assign err_bits_bad_data_addr_wd = reg_wdata[0];
assign err_bits_bad_insn_addr_wd = reg_wdata[1];
assign err_bits_call_stack_wd = reg_wdata[2];
assign err_bits_illegal_insn_wd = reg_wdata[3];
assign err_bits_loop_wd = reg_wdata[4];
assign err_bits_key_invalid_wd = reg_wdata[5];
assign err_bits_rnd_rep_chk_fail_wd = reg_wdata[6];
assign err_bits_rnd_fips_chk_fail_wd = reg_wdata[7];
assign err_bits_imem_intg_violation_wd = reg_wdata[16];
assign err_bits_dmem_intg_violation_wd = reg_wdata[17];
assign err_bits_reg_intg_violation_wd = reg_wdata[18];
assign err_bits_bus_intg_violation_wd = reg_wdata[19];
assign err_bits_bad_internal_state_wd = reg_wdata[20];
assign err_bits_illegal_bus_access_wd = reg_wdata[21];
assign err_bits_lifecycle_escalation_wd = reg_wdata[22];
assign err_bits_fatal_software_wd = reg_wdata[23];
assign insn_cnt_re = addr_hit[9] & reg_re & !reg_error;
assign insn_cnt_we = addr_hit[9] & reg_we & !reg_error;
assign insn_cnt_wd = reg_wdata[31:0];
assign load_checksum_re = addr_hit[10] & reg_re & !reg_error;
assign load_checksum_we = addr_hit[10] & reg_we & !reg_error;
assign load_checksum_wd = reg_wdata[31:0];
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = intr_state_we;
reg_we_check[1] = intr_enable_we;
reg_we_check[2] = intr_test_we;
reg_we_check[3] = alert_test_we;
reg_we_check[4] = cmd_we;
reg_we_check[5] = ctrl_we;
reg_we_check[6] = 1'b0;
reg_we_check[7] = err_bits_we;
reg_we_check[8] = 1'b0;
reg_we_check[9] = insn_cnt_we;
reg_we_check[10] = load_checksum_we;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[4]: begin
reg_rdata_next[7:0] = '0;
end
addr_hit[5]: begin
reg_rdata_next[0] = ctrl_qs;
end
addr_hit[6]: begin
reg_rdata_next[7:0] = status_qs;
end
addr_hit[7]: begin
reg_rdata_next[0] = err_bits_bad_data_addr_qs;
reg_rdata_next[1] = err_bits_bad_insn_addr_qs;
reg_rdata_next[2] = err_bits_call_stack_qs;
reg_rdata_next[3] = err_bits_illegal_insn_qs;
reg_rdata_next[4] = err_bits_loop_qs;
reg_rdata_next[5] = err_bits_key_invalid_qs;
reg_rdata_next[6] = err_bits_rnd_rep_chk_fail_qs;
reg_rdata_next[7] = err_bits_rnd_fips_chk_fail_qs;
reg_rdata_next[16] = err_bits_imem_intg_violation_qs;
reg_rdata_next[17] = err_bits_dmem_intg_violation_qs;
reg_rdata_next[18] = err_bits_reg_intg_violation_qs;
reg_rdata_next[19] = err_bits_bus_intg_violation_qs;
reg_rdata_next[20] = err_bits_bad_internal_state_qs;
reg_rdata_next[21] = err_bits_illegal_bus_access_qs;
reg_rdata_next[22] = err_bits_lifecycle_escalation_qs;
reg_rdata_next[23] = err_bits_fatal_software_qs;
end
addr_hit[8]: begin
reg_rdata_next[0] = fatal_alert_cause_imem_intg_violation_qs;
reg_rdata_next[1] = fatal_alert_cause_dmem_intg_violation_qs;
reg_rdata_next[2] = fatal_alert_cause_reg_intg_violation_qs;
reg_rdata_next[3] = fatal_alert_cause_bus_intg_violation_qs;
reg_rdata_next[4] = fatal_alert_cause_bad_internal_state_qs;
reg_rdata_next[5] = fatal_alert_cause_illegal_bus_access_qs;
reg_rdata_next[6] = fatal_alert_cause_lifecycle_escalation_qs;
reg_rdata_next[7] = fatal_alert_cause_fatal_software_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = insn_cnt_qs;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = load_checksum_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule