blob: e4394512e0ad58244a899695db39a726cc68f156 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "hw/ip/aes/model/aes_modes.h"
#include "sw/device/lib/base/memory.h"
#include "sw/device/lib/base/mmio.h"
#include "sw/device/lib/dif/dif_aes.h"
#include "sw/device/lib/runtime/log.h"
#include "sw/device/lib/testing/aes_testutils.h"
#include "sw/device/lib/testing/entropy_testutils.h"
#include "sw/device/lib/testing/test_framework/check.h"
#include "sw/device/lib/testing/test_framework/ottf_main.h"
#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h"
#define TIMEOUT (1000 * 1000)
// The mask share, used to mask kKey. Note that the masking should not be done
// manually. Software is expected to get the key in two shares right from the
// beginning.
static const uint8_t kKeyShare1[] = {
0x0f, 0x1f, 0x2f, 0x3f, 0x4f, 0x5f, 0x6f, 0x7f, 0x8f, 0x9f, 0xaf,
0xbf, 0xcf, 0xdf, 0xef, 0xff, 0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a,
0x6a, 0x7a, 0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa,
};
OTTF_DEFINE_TEST_CONFIG();
bool test_main(void) {
dif_aes_t aes;
// Initialise AES.
CHECK_DIF_OK(
dif_aes_init(mmio_region_from_addr(TOP_EARLGREY_AES_BASE_ADDR), &aes));
CHECK_DIF_OK(dif_aes_reset(&aes));
// Mask the key. Note that this should not be done manually. Software is
// expected to get the key in two shares right from the beginning.
uint8_t key_share0[sizeof(kAesModesKey256)];
for (int i = 0; i < sizeof(kAesModesKey256); ++i) {
key_share0[i] = kAesModesKey256[i] ^ kKeyShare1[i];
}
// "Convert" key share byte arrays to `dif_aes_key_share_t`.
dif_aes_key_share_t key;
memcpy(key.share0, key_share0, sizeof(key.share0));
memcpy(key.share1, kKeyShare1, sizeof(key.share1));
// "Convert" iv byte arrays to `dif_aes_iv_t`.
dif_aes_iv_t iv;
memcpy(iv.iv, kAesModesIvCbc, sizeof(iv.iv));
// Setup CBC encryption transaction.
dif_aes_transaction_t transaction = {
.operation = kDifAesOperationEncrypt,
.mode = kDifAesModeCbc,
.key_len = kDifAesKey256,
.manual_operation = kDifAesManualOperationManual,
};
// Write the initial key share, IV and data in CSRs (known combinations).
CHECK_DIF_OK(dif_aes_start(&aes, &transaction, &key, &iv));
dif_aes_data_t in_data_plain;
memcpy(in_data_plain.data, kAesModesPlainText, sizeof(in_data_plain.data));
AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusInputReady, true, TIMEOUT);
CHECK_DIF_OK(dif_aes_load_data(&aes, in_data_plain));
// Write the PRNG_RESEED bit to reseed the internal state of the PRNG.
CHECK_DIF_OK(dif_aes_trigger(&aes, kDifAesTriggerPrngReseed));
// Trigger the AES operation to run and wait for it to complete.
CHECK_DIF_OK(dif_aes_trigger(&aes, kDifAesTriggerStart));
AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusOutputValid, true, TIMEOUT);
// Check the ciphertext against the expected value.
dif_aes_data_t out_data;
CHECK_DIF_OK(dif_aes_read_output(&aes, &out_data));
CHECK_ARRAYS_EQ((uint8_t *)out_data.data, kAesModesCipherTextCbc256,
sizeof(out_data.data));
// Write the KEY_IV_DATA_IN_CLEAR and DATA_OUT_CLEAR trigger bits to 1 and
// wait for it to complete by polling the status idle bit.
CHECK_DIF_OK(dif_aes_trigger(&aes, kDifAesTriggerDataOutClear));
CHECK_DIF_OK(dif_aes_trigger(&aes, kDifAesTriggerKeyIvDataInClear));
AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusIdle, true, TIMEOUT);
// Read back the data out CSRs - they should all read garbage values.
CHECK(dif_aes_read_output(&aes, &out_data) == kDifError);
CHECK(!aes_testutils_get_status(&aes, kDifAesStatusOutputValid));
// Assertion check verifies that the internal states (data_in, key share and
// IV are also garbage, i.e. different from the originally written values.
CHECK_DIF_OK(dif_aes_read_iv(&aes, &iv));
CHECK_ARRAYS_NE((uint8_t *)iv.iv, kAesModesIvCbc, sizeof(kAesModesIvCbc));
CHECK_DIF_OK(dif_aes_end(&aes));
return true;
}