blob: 02e17fd7c1f5adbc8988d1c1a00b4cf4121a32ec [file] [log] [blame]
# Copyright lowRISC contributors.
# Licensed under the Apache License, Version 2.0, see LICENSE for details.
# SPDX-License-Identifier: Apache-2.0
load("@rules_cc//cc:find_cc_toolchain.bzl", "find_cc_toolchain")
load(
"@lowrisc_opentitan//rules:cc_side_outputs.bzl",
"rv_asm",
"rv_llvm_ir",
"rv_preprocess",
"rv_relink_with_linkmap",
)
load(
"@lowrisc_opentitan//rules:rv.bzl",
"rv_rule",
_OPENTITAN_CPU = "OPENTITAN_CPU",
_OPENTITAN_PLATFORM = "OPENTITAN_PLATFORM",
_opentitan_transition = "opentitan_transition",
)
"""Rules to build OpenTitan for the RiscV target"""
# Re-exports of names from transition.bzl; many files in the repo use opentitan.bzl
# to get to them.
OPENTITAN_CPU = _OPENTITAN_CPU
OPENTITAN_PLATFORM = _OPENTITAN_PLATFORM
opentitan_transition = _opentitan_transition
_targets_compatible_with = {
OPENTITAN_PLATFORM: [OPENTITAN_CPU],
}
# This constant holds a dictionary of per-device dependencies which are used to
# generate slightly different binaries for each hardware target, including two
# simulation platforms (DV and Verilator), and two FPGA platforms (NexysVideo
# and CW310).
PER_DEVICE_DEPS = {
"sim_verilator": ["@//sw/device/lib/arch:sim_verilator"],
"sim_dv": ["@//sw/device/lib/arch:sim_dv"],
"fpga_nexysvideo": ["@//sw/device/lib/arch:fpga_nexysvideo"],
"fpga_cw310": ["@//sw/device/lib/arch:fpga_cw310"],
}
def _obj_transform_impl(ctx):
cc_toolchain = find_cc_toolchain(ctx).cc
outputs = []
for src in ctx.files.srcs:
binary = ctx.actions.declare_file("{}.{}".format(src.basename, ctx.attr.suffix))
outputs.append(binary)
ctx.actions.run(
outputs = [binary],
inputs = [src] + cc_toolchain.all_files.to_list(),
arguments = [
"--output-target",
ctx.attr.format,
src.path,
binary.path,
],
executable = cc_toolchain.objcopy_executable,
)
return [DefaultInfo(files = depset(outputs), data_runfiles = ctx.runfiles(files = outputs))]
obj_transform = rv_rule(
implementation = _obj_transform_impl,
attrs = {
"srcs": attr.label_list(allow_files = True),
"suffix": attr.string(default = "bin"),
"format": attr.string(default = "binary"),
"_cc_toolchain": attr.label(default = Label("@bazel_tools//tools/cpp:current_cc_toolchain")),
},
toolchains = ["@rules_cc//cc:toolchain_type"],
)
def _sign_bin_impl(ctx):
signed_image = ctx.actions.declare_file(
"{0}.{1}.signed.bin".format(
# Remove ".bin" from file basename.
ctx.file.bin.basename.replace("." + ctx.file.bin.extension, ""),
ctx.attr.key_name,
),
)
outputs = [signed_image]
inputs = [
ctx.file.bin,
ctx.file.key,
ctx.file._tool,
]
manifest = []
if ctx.file.manifest:
manifest = ["--manifest={}".format(ctx.file.manifest.path)]
inputs.append(ctx.file.manifest)
ctx.actions.run(
outputs = outputs,
inputs = inputs,
arguments = [
"image",
"manifest",
"update",
"--key-file={}".format(ctx.file.key.path),
"--sign",
"--output={}".format(signed_image.path),
ctx.file.bin.path,
] + manifest,
executable = ctx.file._tool.path,
)
return [DefaultInfo(
files = depset(outputs),
data_runfiles = ctx.runfiles(files = outputs),
)]
sign_bin = rv_rule(
implementation = _sign_bin_impl,
attrs = {
"bin": attr.label(allow_single_file = True),
"key": attr.label(
default = "@//sw/device/silicon_creator/mask_rom/keys:test_private_key_0",
allow_single_file = True,
),
"key_name": attr.string(),
"manifest": attr.label(allow_single_file = True),
# TODO(lowRISC/opentitan:#11199): explore other options to side-step the
# need for this transition, in order to build the ROM_EXT signer tool.
"platform": attr.string(default = "@local_config_platform//:host"),
"_tool": attr.label(
default = "//sw/host/opentitantool:opentitantool",
allow_single_file = True,
),
},
)
def _elf_to_disassembly_impl(ctx):
cc_toolchain = find_cc_toolchain(ctx).cc
outputs = []
for src in ctx.files.srcs:
disassembly = ctx.actions.declare_file("{}.elf.s".format(src.basename))
outputs.append(disassembly)
ctx.actions.run_shell(
tools = [ctx.file._cleanup_script],
outputs = [disassembly],
inputs = [src] + cc_toolchain.all_files.to_list(),
arguments = [
cc_toolchain.objdump_executable,
src.path,
ctx.file._cleanup_script.path,
disassembly.path,
],
execution_requirements = {
"no-sandbox": "1",
},
command = "$1 --disassemble --headers --line-numbers --disassemble-zeroes --source --visualize-jumps $2 | $3 > $4",
)
return [DefaultInfo(files = depset(outputs), data_runfiles = ctx.runfiles(files = outputs))]
elf_to_disassembly = rv_rule(
implementation = _elf_to_disassembly_impl,
attrs = {
"srcs": attr.label_list(allow_files = True),
"platform": attr.string(default = OPENTITAN_PLATFORM),
"_cleanup_script": attr.label(
allow_single_file = True,
default = Label("@lowrisc_opentitan//rules/scripts:expand_tabs.sh"),
),
"_cc_toolchain": attr.label(default = Label("@bazel_tools//tools/cpp:current_cc_toolchain")),
},
toolchains = ["@rules_cc//cc:toolchain_type"],
incompatible_use_toolchain_transition = True,
)
def _elf_to_scrambled_rom_impl(ctx):
outputs = []
for src in ctx.files.srcs:
if src.extension != "elf":
fail("only ROM images in the ELF format may be converted to the VMEM format and scrambled.")
scrambled = ctx.actions.declare_file(
"{}.scr.39.vmem".format(
# Remove ".elf" from file basename.
src.basename.replace("." + src.extension, ""),
),
)
outputs.append(scrambled)
ctx.actions.run(
outputs = [scrambled],
inputs = [
src,
ctx.executable._scramble_tool,
ctx.file._config,
],
arguments = [
ctx.file._config.path,
src.path,
scrambled.path,
],
executable = ctx.executable._scramble_tool,
)
return [DefaultInfo(
files = depset(outputs),
data_runfiles = ctx.runfiles(files = outputs),
)]
elf_to_scrambled_rom_vmem = rv_rule(
implementation = _elf_to_scrambled_rom_impl,
attrs = {
"srcs": attr.label_list(allow_files = True),
"_scramble_tool": attr.label(
default = "@//hw/ip/rom_ctrl/util:scramble_image",
executable = True,
cfg = "exec",
),
"_config": attr.label(
default = "@//hw/top_earlgrey/data:autogen/top_earlgrey.gen.hjson",
allow_single_file = True,
),
},
)
def _bin_to_vmem_impl(ctx):
outputs = []
vmem = ctx.actions.declare_file("{}.{}.vmem".format(
# Remove ".bin" from file basename.
ctx.file.bin.basename.replace("." + ctx.file.bin.extension, ""),
ctx.attr.word_size,
))
outputs.append(vmem)
ctx.actions.run(
outputs = [vmem],
inputs = [
ctx.file.bin,
],
arguments = [
ctx.file.bin.path,
"--binary",
# Reverse the endianness of every word.
"--offset",
"0x0",
"--byte-swap",
str(ctx.attr.word_size // 8),
# Pad to word alignment.
"--fill",
"0xff",
"-within",
ctx.file.bin.path,
"-binary",
"-range-pad",
str(ctx.attr.word_size // 8),
# Output a VMEM file with specified word size
"--output",
vmem.path,
"--vmem",
str(ctx.attr.word_size),
],
# This this executable is expected to be installed (as required by the
# srecord package in apt-requirements.txt).
executable = "srec_cat",
)
return [DefaultInfo(
files = depset(outputs),
data_runfiles = ctx.runfiles(files = outputs),
)]
bin_to_vmem = rv_rule(
implementation = _bin_to_vmem_impl,
attrs = {
"bin": attr.label(allow_single_file = True),
"word_size": attr.int(
default = 64,
doc = "Word size of VMEM file.",
mandatory = True,
values = [32, 64],
),
},
)
def _scramble_flash_vmem_impl(ctx):
outputs = []
scrambled_vmem = ctx.actions.declare_file("{}.scr.vmem".format(
# Remove ".vmem" from file basename.
ctx.file.vmem.basename.replace("." + ctx.file.vmem.extension, ""),
))
outputs.append(scrambled_vmem)
ctx.actions.run(
outputs = [scrambled_vmem],
inputs = [
ctx.file.vmem,
ctx.executable._tool,
],
arguments = [
ctx.file.vmem.path,
scrambled_vmem.path,
],
executable = ctx.executable._tool,
)
return [DefaultInfo(
files = depset(outputs),
data_runfiles = ctx.runfiles(files = outputs),
)]
scramble_flash_vmem = rv_rule(
implementation = _scramble_flash_vmem_impl,
attrs = {
"vmem": attr.label(allow_single_file = True),
"_tool": attr.label(
default = "@lowrisc_opentitan//util/design:gen-flash-img",
executable = True,
cfg = "exec",
),
},
)
def _gen_sim_dv_logs_db_impl(ctx):
outputs = []
for src in ctx.files.srcs:
if src.extension != "elf":
fail("can only generate DV logs database files from ELF files.")
logs_db = ctx.actions.declare_file("{}.logs.txt".format(
src.basename.replace("." + src.extension, ""),
))
rodata = ctx.actions.declare_file("{}.rodata.txt".format(
src.basename.replace("." + src.extension, ""),
))
outputs.append(logs_db)
outputs.append(rodata)
ctx.actions.run(
outputs = outputs,
inputs = [src],
arguments = [
"--elf-file",
src.path,
"--rodata-sections",
".rodata",
"--logs-fields-section",
".logs.fields",
"--name",
src.basename.replace("." + src.extension, ""),
"--outdir",
logs_db.dirname,
],
executable = ctx.executable._tool,
)
return [DefaultInfo(
files = depset(outputs),
data_runfiles = ctx.runfiles(files = outputs),
)]
gen_sim_dv_logs_db = rule(
implementation = _gen_sim_dv_logs_db_impl,
cfg = opentitan_transition,
attrs = {
"srcs": attr.label_list(allow_files = True),
"platform": attr.string(default = OPENTITAN_PLATFORM),
"_tool": attr.label(
default = "@lowrisc_opentitan//util/device_sw_utils:extract_sw_logs_db",
cfg = "exec",
executable = True,
),
"_allowlist_function_transition": attr.label(
default = "@bazel_tools//tools/allowlists/function_transition_allowlist",
),
},
)
def opentitan_binary(
name,
platform = OPENTITAN_PLATFORM,
output_bin = True,
output_disassembly = True,
extract_sw_logs_db = False,
**kwargs):
"""A helper macro for generating OpenTitan binary artifacts.
This macro is mostly a wrapper around cc_binary, but creates artifacts
compatible with OpenTitan binaries. The actual artifacts created are an ELF
file, a BIN file, the disassembly, and a log message database (text file)
for the DV simulation testbench. Each of these output targets performs a
bazel transition to the RV32I toolchain to build the target under the
correct compiler.
Args:
@param name: The name of this rule.
@param platform: The target platform for the artifacts.
@param output_bin: Whether to emit a BIN file.
@param output_disassembly: Whether to emit a disassembly file.
@param extract_sw_logs_db: Whether to emit a log database for DV testbench.
@param **kwargs: Arguments to forward to `cc_binary`.
Emits rules:
cc_binary named: <name>
optionally:
obj_transform named: <name>_bin
elf_to_dissassembly named: <name>_dis
gen_sim_dv_logs_db named: <name>_sim_dv_logs
filegroup named: <name>
with all the generated rules
"""
copts = kwargs.pop("copts", []) + [
"-nostdlib",
"-ffreestanding",
]
linkopts = kwargs.pop("linkopts", []) + [
"-nostartfiles",
"-nostdlib",
]
deps = kwargs.pop("deps", [])
targets = []
# Generate ELF
native.cc_binary(
name = name,
deps = deps,
target_compatible_with = _targets_compatible_with[platform],
copts = copts,
linkopts = linkopts,
**kwargs
)
preproc_name = "{}_{}".format(name, "preproc")
targets.append(preproc_name)
rv_preprocess(
name = preproc_name,
target = name,
)
asm_name = "{}_{}".format(name, "asm")
targets.append(asm_name)
rv_asm(
name = asm_name,
target = name,
)
ll_name = "{}_{}".format(name, "ll")
targets.append(ll_name)
rv_llvm_ir(
name = ll_name,
target = name,
)
map_name = "{}_{}".format(name, "map")
targets.append(map_name)
rv_relink_with_linkmap(
name = map_name,
target = name,
)
elf_name = "{}_{}".format(name, "elf")
targets.append(":" + elf_name)
obj_transform(
name = elf_name,
srcs = [name],
format = "elf32-little",
suffix = "elf",
platform = platform,
)
# Generate Binary
if output_bin:
bin_name = "{}_{}".format(name, "bin")
targets.append(":" + bin_name)
obj_transform(
name = bin_name,
srcs = [name],
platform = platform,
)
# Generate Disassembly
if output_disassembly:
dis_name = "{}_{}".format(name, "dis")
targets.append(":" + dis_name)
elf_to_disassembly(
name = dis_name,
srcs = [name],
platform = platform,
)
# Generate log message database for DV sim testbench
if extract_sw_logs_db:
logs_db_name = "{}_{}".format(name, "logs_db")
targets.append(":" + logs_db_name)
gen_sim_dv_logs_db(
name = logs_db_name,
srcs = [elf_name],
platform = platform,
)
native.filegroup(
name = name + "_base_bins",
srcs = targets,
)
return targets
def opentitan_rom_binary(
name,
platform = OPENTITAN_PLATFORM,
per_device_deps = PER_DEVICE_DEPS,
**kwargs):
"""A helper macro for generating OpenTitan binary artifacts for ROM.
This macro is mostly a wrapper around a opentitan_binary macro, which
itself is a wrapper around cc_binary, but also creates artifacts for each
of the keys in `per_device_deps`. The actual artifacts created are an ELF
file, a BIN file, the disassembly, the sim_dv logs database, the
unscrambled (ROM) VMEM file, and the scrambled (ROM) VMEM file. Each of
these output targets performs a bazel transition to the RV32I toolchain to
build the target under the correct compiler.
Args:
@param name: The name of this rule.
@param platform: The target platform for the artifacts.
@param per_device_deps: The deps for each of the hardware target.
@param **kwargs: Arguments to forward to `opentitan_binary`.
Emits rules:
For each device in per_device_deps entry:
cc_binary named: <name>_<device>
obj_transform named: <name>_<device>_elf
obj_transform named: <name>_<device>_bin
elf_to_dissassembly named: <name>_<device>_dis
bin_to_rom_vmem named: <name>_<device>_vmem
elf_to_scrambled_rom_vmem named: <name>_<device>_scr_vmem
For the sim_dv device:
gen_sim_dv_logs_db named: <name>_sim_dv_logs
filegroup named: <name>
with all the generated rules
"""
deps = kwargs.pop("deps", [])
targets = []
for (device, dev_deps) in per_device_deps.items():
devname = "{}_{}".format(name, device)
# Generate ELF, Binary, Disassembly, and (maybe) sim_dv logs database
targets.extend(opentitan_binary(
name = devname,
deps = deps + dev_deps,
extract_sw_logs_db = device in ["sim_dv", "sim_verilator"],
**kwargs
))
elf_name = "{}_{}".format(devname, "elf")
bin_name = "{}_{}".format(devname, "bin")
# Generate Un-scrambled ROM VMEM
vmem_name = "{}_vmem".format(devname)
targets.append(":" + vmem_name)
bin_to_vmem(
name = vmem_name,
bin = bin_name,
platform = platform,
word_size = 32,
)
# Generate Scrambled ROM VMEM
scr_vmem_name = "{}_scr_vmem".format(devname)
targets.append(":" + scr_vmem_name)
elf_to_scrambled_rom_vmem(
name = scr_vmem_name,
srcs = [elf_name],
platform = platform,
)
native.filegroup(
name = name,
srcs = targets,
)
def opentitan_flash_binary(
name,
platform = OPENTITAN_PLATFORM,
signing_keys = {
"test_key_0": "@//sw/device/silicon_creator/mask_rom/keys:test_private_key_0",
},
per_device_deps = PER_DEVICE_DEPS,
output_signed = False,
manifest = None,
**kwargs):
"""A helper macro for generating OpenTitan binary artifacts for flash.
This macro is mostly a wrapper around a opentitan_binary macro, which itself
is a wrapper around cc_binary, but also creates artifacts for each of the
keys in `per_device_deps`, and if signing is enabled, each of the keys in
`signing_keys`. The actual artifacts created are an ELF file, a (signed and)
unsigned BIN file, the disassembly, the sim_dv logs database, a (signed and)
unsigned flash VMEM file, and a (signed and) unsigned scrambled flash VMEM
file. Some of these output targets perform a bazel transition to the RV32I
toolchain to build the target under the correct compiler.
Args:
@param name: The name of this rule.
@param platform: The target platform for the artifacts.
@param signing_keys: The signing keys for to sign each BIN file with.
@param per_device_deps: The deps for each of the hardware target.
@param output_signed: Whether or not to emit signed binary/VMEM files.
@param **kwargs: Arguments to forward to `opentitan_binary`.
Emits rules:
For each device in per_device_deps entry:
cc_binary named: <name>_<device>
obj_transform named: <name>_<device>_elf
obj_transform named: <name>_<device>_bin
elf_to_dissassembly named: <name>_<device>_dis
bin_to_vmem named: <name>_<device>_flash_vmem
scrambled_flash_vmem named: <name>_<device>_scr_flash_vmem
optionally:
sign_bin named: <name>_<device>_bin_signed_<key_name>
bin_to_vmem named: <name>_<device>_flash_vmem_signed_<key_name>
scrambled_flash_vmem named: <name>_<device>_scr_flash_vmem_signed_<key_name>
For the sim_dv device:
gen_sim_dv_logs_db named: <name>_sim_dv_logs
filegroup named: <name>
with all the generated rules
"""
deps = kwargs.pop("deps", [])
targets = []
for (device, dev_deps) in per_device_deps.items():
devname = "{}_{}".format(name, device)
# Generate ELF, Binary, Disassembly, and (maybe) sim_dv logs database
targets.extend(opentitan_binary(
name = devname,
deps = deps + dev_deps,
extract_sw_logs_db = device in ["sim_dv", "sim_verilator"],
**kwargs
))
bin_name = "{}_{}".format(devname, "bin")
# Sign BIN (if required) and generate scrambled VMEM images.
if output_signed:
for (key_name, key) in signing_keys.items():
# Sign the Binary.
signed_bin_name = "{}_bin_signed_{}".format(devname, key_name)
targets.append(":" + signed_bin_name)
sign_bin(
name = signed_bin_name,
bin = bin_name,
key = key,
key_name = key_name,
manifest = manifest,
)
# Generate a VMEM64 from the signed binary.
signed_vmem_name = "{}_vmem64_signed_{}".format(
devname,
key_name,
)
targets.append(":" + signed_vmem_name)
bin_to_vmem(
name = signed_vmem_name,
bin = signed_bin_name,
platform = platform,
word_size = 64, # Backdoor-load VMEM image uses 64-bit words
)
# Scramble signed VMEM64.
scr_signed_vmem_name = "{}_scr_vmem64_signed_{}".format(
devname,
key_name,
)
targets.append(":" + scr_signed_vmem_name)
scramble_flash_vmem(
name = scr_signed_vmem_name,
vmem = signed_vmem_name,
platform = platform,
)
else:
# Generate a VMEM64 from the binary.
vmem_name = "{}_vmem64".format(devname)
targets.append(":" + vmem_name)
bin_to_vmem(
name = vmem_name,
bin = bin_name,
platform = platform,
word_size = 64, # Backdoor-load VMEM image uses 64-bit words
)
# Scramble VMEM64.
scr_vmem_name = "{}_scr_vmem64".format(devname)
targets.append(":" + scr_vmem_name)
scramble_flash_vmem(
name = scr_vmem_name,
vmem = vmem_name,
platform = platform,
)
native.filegroup(
name = name,
srcs = targets,
)