blob: 1e18d375254d7b200285a5e9f63ddb4b96bd77ba [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Flash Controller Module
//
//
`include "prim_assert.sv"
module flash_ctrl import flash_ctrl_pkg::*; #(
parameter logic AlertAsyncOn = 1'b1,
parameter flash_key_t RndCnstAddrKey = RndCnstAddrKeyDefault,
parameter flash_key_t RndCnstDataKey = RndCnstDataKeyDefault,
parameter lfsr_seed_t RndCnstLfsrSeed = RndCnstLfsrSeedDefault,
parameter lfsr_perm_t RndCnstLfsrPerm = RndCnstLfsrPermDefault
) (
input clk_i,
input rst_ni,
input clk_otp_i,
input rst_otp_ni,
// life cycle interface
input lc_ctrl_pkg::lc_tx_t lc_creator_seed_sw_rw_en_i,
input lc_ctrl_pkg::lc_tx_t lc_owner_seed_sw_rw_en_i,
input lc_ctrl_pkg::lc_tx_t lc_iso_part_sw_rd_en_i,
input lc_ctrl_pkg::lc_tx_t lc_iso_part_sw_wr_en_i,
input lc_ctrl_pkg::lc_tx_t lc_seed_hw_rd_en_i,
// Bus Interface
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Flash Interface
input flash_rsp_t flash_i,
output flash_req_t flash_o,
// otp/lc/pwrmgr/keymgr Interface
output otp_ctrl_pkg::flash_otp_key_req_t otp_o,
input otp_ctrl_pkg::flash_otp_key_rsp_t otp_i,
input lc_ctrl_pkg::lc_tx_t rma_req_i,
input lc_ctrl_pkg::lc_flash_rma_seed_t rma_seed_i,
output lc_ctrl_pkg::lc_tx_t rma_ack_o,
input pwrmgr_pkg::pwr_flash_req_t pwrmgr_i,
output pwrmgr_pkg::pwr_flash_rsp_t pwrmgr_o,
output keymgr_flash_t keymgr_o,
// IOs
input cio_tck_i,
input cio_tms_i,
input cio_tdi_i,
output logic cio_tdo_en_o,
output logic cio_tdo_o,
// Interrupts
output logic intr_prog_empty_o, // Program fifo is empty
output logic intr_prog_lvl_o, // Program fifo is empty
output logic intr_rd_full_o, // Read fifo is full
output logic intr_rd_lvl_o, // Read fifo is full
output logic intr_op_done_o, // Requested flash operation (wr/erase) done
// Alerts
input prim_alert_pkg::alert_rx_t [flash_ctrl_reg_pkg::NumAlerts-1:0] alert_rx_i,
output prim_alert_pkg::alert_tx_t [flash_ctrl_reg_pkg::NumAlerts-1:0] alert_tx_o
);
import flash_ctrl_reg_pkg::*;
flash_ctrl_reg2hw_t reg2hw;
flash_ctrl_hw2reg_t hw2reg;
tlul_pkg::tl_h2d_t tl_win_h2d [3];
tlul_pkg::tl_d2h_t tl_win_d2h [3];
assign tl_win_d2h[2] = flash_i.tl_flash_p2c;
// Register module
flash_ctrl_reg_top u_reg (
.clk_i,
.rst_ni,
.tl_i,
.tl_o,
.tl_win_o (tl_win_h2d),
.tl_win_i (tl_win_d2h),
.reg2hw,
.hw2reg,
.intg_err_o (),
.devmode_i (1'b1)
);
// FIFO Connections
logic prog_fifo_wvalid;
logic prog_fifo_wready;
logic prog_fifo_rvalid;
logic prog_fifo_ren;
logic [BusWidth-1:0] prog_fifo_wdata;
logic [BusWidth-1:0] prog_fifo_rdata;
logic [FifoDepthW-1:0] prog_fifo_depth;
logic rd_fifo_wready;
logic rd_fifo_rvalid;
logic rd_fifo_rready;
logic rd_fifo_wen;
logic rd_fifo_ren;
logic [BusWidth-1:0] rd_fifo_wdata;
logic [BusWidth-1:0] rd_fifo_rdata;
logic [FifoDepthW-1:0] rd_fifo_depth;
logic rd_fifo_full;
// Program Control Connections
logic prog_flash_req;
logic prog_flash_ovfl;
logic [BusAddrW-1:0] prog_flash_addr;
logic prog_op_valid;
// Read Control Connections
logic rd_flash_req;
logic rd_flash_ovfl;
logic [BusAddrW-1:0] rd_flash_addr;
// Erase Control Connections
logic erase_flash_req;
logic [BusAddrW-1:0] erase_flash_addr;
flash_erase_e erase_flash_type;
// Done / Error signaling from ctrl modules
logic prog_done, rd_done, erase_done;
logic prog_err, rd_err, erase_err;
// Flash Memory Properties Connections
logic [BusAddrW-1:0] flash_addr;
logic flash_req;
logic flash_rd_done, flash_prog_done, flash_erase_done;
logic flash_mp_error;
logic [BusWidth-1:0] flash_prog_data;
logic flash_prog_last;
flash_prog_e flash_prog_type;
logic [BusWidth-1:0] flash_rd_data;
logic flash_rd_err;
logic flash_phy_busy;
logic rd_op;
logic prog_op;
logic erase_op;
logic [AllPagesW-1:0] err_addr;
flash_lcmgr_phase_e phase;
// Flash control arbitration connections to hardware interface
flash_key_t addr_key;
flash_key_t data_key;
flash_ctrl_reg2hw_control_reg_t hw_ctrl;
logic hw_req;
logic [top_pkg::TL_AW-1:0] hw_addr;
logic hw_done;
logic hw_err;
logic hw_rvalid;
logic hw_rready;
logic hw_wvalid;
logic [BusWidth-1:0] hw_wdata;
logic hw_wready;
flash_sel_e if_sel;
logic sw_sel;
flash_lcmgr_phase_e hw_phase;
logic creator_seed_priv;
logic owner_seed_priv;
// Flash control arbitration connections to software interface
logic sw_ctrl_done;
logic sw_ctrl_err;
// Flash control muxed connections
flash_ctrl_reg2hw_control_reg_t muxed_ctrl;
logic [top_pkg::TL_AW-1:0] muxed_addr;
logic op_start;
logic [11:0] op_num_words;
logic [BusAddrW-1:0] op_addr;
flash_op_e op_type;
flash_part_e op_part;
logic [InfoTypesWidth-1:0] op_info_sel;
flash_erase_e op_erase_type;
flash_prog_e op_prog_type;
logic ctrl_init_busy;
logic fifo_clr;
// software tlul to flash control aribration
logic sw_rvalid;
logic adapter_rvalid;
logic sw_wvalid;
logic [BusWidth-1:0] sw_wdata;
logic sw_wen;
logic sw_wready;
// lfsr for local entropy usage
logic [31:0] rand_val;
logic lfsr_en;
logic lfsr_seed_en;
// life cycle connections
lc_ctrl_pkg::lc_tx_t [0:0] lc_creator_seed_sw_rw_en;
lc_ctrl_pkg::lc_tx_t [0:0] lc_owner_seed_sw_rw_en;
lc_ctrl_pkg::lc_tx_t [0:0] lc_iso_part_sw_rd_en;
lc_ctrl_pkg::lc_tx_t [0:0] lc_iso_part_sw_wr_en;
lc_ctrl_pkg::lc_tx_t [0:0] lc_seed_hw_rd_en;
// synchronize enables into local domain
prim_lc_sync #(
.NumCopies(1)
) u_lc_creator_seed_sw_rw_en_sync (
.clk_i,
.rst_ni,
.lc_en_i(lc_creator_seed_sw_rw_en_i),
.lc_en_o(lc_creator_seed_sw_rw_en)
);
prim_lc_sync #(
.NumCopies(1)
) u_lc_owner_seed_sw_rw_en_sync (
.clk_i,
.rst_ni,
.lc_en_i(lc_owner_seed_sw_rw_en_i),
.lc_en_o(lc_owner_seed_sw_rw_en)
);
prim_lc_sync #(
.NumCopies(1)
) u_lc_iso_part_sw_rd_en_sync (
.clk_i,
.rst_ni,
.lc_en_i(lc_iso_part_sw_rd_en_i),
.lc_en_o(lc_iso_part_sw_rd_en)
);
prim_lc_sync #(
.NumCopies(1)
) u_lc_iso_part_sw_wr_en_sync (
.clk_i,
.rst_ni,
.lc_en_i(lc_iso_part_sw_wr_en_i),
.lc_en_o(lc_iso_part_sw_wr_en)
);
prim_lc_sync #(
.NumCopies(1)
) u_lc_seed_hw_rd_en_sync (
.clk_i,
.rst_ni,
.lc_en_i(lc_seed_hw_rd_en_i),
.lc_en_o(lc_seed_hw_rd_en)
);
prim_lfsr #(
.EntropyDw(EdnWidth),
.LfsrDw(LfsrWidth),
.StateOutDw(LfsrWidth),
.DefaultSeed(RndCnstLfsrSeed),
.StatePermEn(1),
.StatePerm(RndCnstLfsrPerm)
) u_lfsr (
.clk_i,
.rst_ni,
.seed_en_i(lfsr_seed_en),
.seed_i(rma_seed_i),
.lfsr_en_i(lfsr_en),
.entropy_i('0),
.state_o(rand_val)
);
// flash control arbitration between softawre / harware interfaces
flash_ctrl_arb u_ctrl_arb (
.clk_i,
.rst_ni,
// software interface to rd_ctrl / erase_ctrl
.sw_ctrl_i(reg2hw.control),
.sw_addr_i(reg2hw.addr.q),
.sw_ack_o(sw_ctrl_done),
.sw_err_o(sw_ctrl_err),
// software interface to rd_fifo
.sw_rvalid_o(sw_rvalid),
.sw_rready_i(adapter_rvalid),
// software interface to prog_fifo
.sw_wvalid_i(sw_wvalid & sw_wen),
.sw_wdata_i(sw_wdata),
.sw_wready_o(sw_wready),
// hardware interface to rd_ctrl / erase_ctrl
.hw_req_i(hw_req),
.hw_ctrl_i(hw_ctrl),
// hardware interface indicating operation phase
.hw_phase_i(hw_phase),
// hardware works on word address, however software expects byte address
.hw_addr_i(hw_addr),
.hw_ack_o(hw_done),
.hw_err_o(hw_err),
// hardware interface to rd_fifo
.hw_rvalid_o(hw_rvalid),
.hw_rready_i(hw_rready),
.hw_wvalid_i(hw_wvalid),
.hw_wdata_i(hw_wdata),
.hw_wready_o(hw_wready),
// hardware interface does not talk to prog_fifo
// muxed interface to rd_ctrl / erase_ctrl
.muxed_ctrl_o(muxed_ctrl),
.muxed_addr_o(muxed_addr),
.prog_ack_i(prog_done),
.prog_err_i(prog_err),
.rd_ack_i(rd_done),
.rd_err_i(rd_err),
.erase_ack_i(erase_done),
.erase_err_i(erase_err),
// muxed interface to rd_fifo
.rd_fifo_rvalid_i(rd_fifo_rvalid),
.rd_fifo_rready_o(rd_fifo_rready),
// muxed interface to prog_fifo
.prog_fifo_wvalid_o(prog_fifo_wvalid),
.prog_fifo_wdata_o(prog_fifo_wdata),
.prog_fifo_wready_i(prog_fifo_wready),
// flash phy initilization ongoing
.flash_phy_busy_i(flash_phy_busy),
// clear fifos
.fifo_clr_o(fifo_clr),
// phase indication
.phase_o(phase),
// indication that sw has been selected
.sel_o(if_sel)
);
assign op_start = muxed_ctrl.start.q;
assign op_num_words = muxed_ctrl.num.q;
assign op_erase_type = flash_erase_e'(muxed_ctrl.erase_sel.q);
assign op_prog_type = flash_prog_e'(muxed_ctrl.prog_sel.q);
assign op_addr = muxed_addr[BusByteWidth +: BusAddrW];
assign op_type = flash_op_e'(muxed_ctrl.op.q);
assign op_part = flash_part_e'(muxed_ctrl.partition_sel.q);
assign op_info_sel = muxed_ctrl.info_sel.q;
assign rd_op = op_type == FlashOpRead;
assign prog_op = op_type == FlashOpProgram;
assign erase_op = op_type == FlashOpErase;
assign sw_sel = if_sel == SwSel;
// software privilege to creator seed
assign creator_seed_priv = lc_creator_seed_sw_rw_en[0] == lc_ctrl_pkg::On;
// software privilege to owner seed
assign owner_seed_priv = lc_owner_seed_sw_rw_en[0] == lc_ctrl_pkg::On;
// hardware interface
flash_ctrl_lcmgr #(
.RndCnstAddrKey(RndCnstAddrKey),
.RndCnstDataKey(RndCnstDataKey)
) u_flash_hw_if (
.clk_i,
.rst_ni,
.clk_otp_i,
.rst_otp_ni,
.init_i(pwrmgr_i.flash_init),
.init_done_o(pwrmgr_o.flash_done),
.provision_en_i(lc_seed_hw_rd_en[0] == lc_ctrl_pkg::On),
// interface to ctrl arb control ports
.ctrl_o(hw_ctrl),
.req_o(hw_req),
.addr_o(hw_addr),
.done_i(hw_done),
.err_i(hw_err),
// interface to ctrl_arb data ports
.rready_o(hw_rready),
.rvalid_i(hw_rvalid),
.wready_i(hw_wready),
.wvalid_o(hw_wvalid),
.wdata_o(hw_wdata),
// direct form rd_fifo
.rdata_i(rd_fifo_rdata),
// external rma request
.rma_req_i,
.rma_ack_o,
// outgoing seeds
.seeds_o(keymgr_o.seeds),
.seed_err_o(), // TBD hook-up to Err code register
// phase indication
.phase_o(hw_phase),
// phy read buffer enable
.rd_buf_en_o(flash_o.rd_buf_en),
// connection to otp
.otp_key_req_o(otp_o),
.otp_key_rsp_i(otp_i),
.addr_key_o(addr_key),
.data_key_o(data_key),
// entropy interface
.edn_req_o(lfsr_seed_en),
.edn_ack_i(1'b1),
.lfsr_en_o(lfsr_en),
.rand_i(rand_val),
// init ongoing
.init_busy_o(ctrl_init_busy)
);
// Program FIFO
// Since the program and read FIFOs are never used at the same time, it should really be one
// FIFO with muxed inputs and outputs. This should be addressed once the flash integration
// strategy has been identified
assign prog_op_valid = op_start & prog_op;
tlul_adapter_sram #(
.SramAw(1), //address unused
.SramDw(BusWidth),
.ByteAccess(0), //flash may not support byte access
.ErrOnRead(1) //reads not supported
) u_to_prog_fifo (
.clk_i,
.rst_ni,
.tl_i (tl_win_h2d[0]),
.tl_o (tl_win_d2h[0]),
.en_ifetch_i (tlul_pkg::InstrDis),
.req_o (sw_wvalid),
.gnt_i (sw_wready),
.we_o (sw_wen),
.addr_o (),
.wmask_o (),
.wdata_o (sw_wdata),
.rdata_i (BusWidth'(0)),
.rvalid_i (1'b0),
.rerror_i (2'b0)
);
prim_fifo_sync #(
.Width(BusWidth),
.Depth(FifoDepth)
) u_prog_fifo (
.clk_i,
.rst_ni,
.clr_i (reg2hw.fifo_rst.q | fifo_clr),
.wvalid_i(prog_fifo_wvalid & prog_op_valid),
.wready_o(prog_fifo_wready),
.wdata_i (prog_fifo_wdata),
.depth_o (prog_fifo_depth),
.full_o (),
.rvalid_o(prog_fifo_rvalid),
.rready_i(prog_fifo_ren),
.rdata_o (prog_fifo_rdata)
);
// Program handler is consumer of prog_fifo
logic [1:0] prog_type_en;
assign prog_type_en[FlashProgNormal] = flash_i.prog_type_avail[FlashProgNormal] &
reg2hw.prog_type_en.normal.q;
assign prog_type_en[FlashProgRepair] = flash_i.prog_type_avail[FlashProgRepair] &
reg2hw.prog_type_en.repair.q;
flash_ctrl_prog u_flash_ctrl_prog (
.clk_i,
.rst_ni,
// Control interface
.op_start_i (prog_op_valid),
.op_num_words_i (op_num_words),
.op_done_o (prog_done),
.op_err_o (prog_err),
.op_addr_i (op_addr),
.op_type_i (op_prog_type),
.type_avail_i (prog_type_en),
// FIFO Interface
.data_i (prog_fifo_rdata),
.data_rdy_i (prog_fifo_rvalid),
.data_rd_o (prog_fifo_ren),
// Flash Macro Interface
.flash_req_o (prog_flash_req),
.flash_addr_o (prog_flash_addr),
.flash_ovfl_o (prog_flash_ovfl),
.flash_data_o (flash_prog_data),
.flash_last_o (flash_prog_last),
.flash_type_o (flash_prog_type),
.flash_done_i (flash_prog_done),
.flash_error_i (flash_mp_error)
);
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
adapter_rvalid <= 1'b0;
end else begin
adapter_rvalid <= rd_fifo_ren && sw_rvalid;
end
end
// tlul adapter represents software's access interface to flash
tlul_adapter_sram #(
.SramAw(1), //address unused
.SramDw(BusWidth),
.ByteAccess(0), //flash may not support byte access
.ErrOnWrite(1) //writes not supported
) u_to_rd_fifo (
.clk_i,
.rst_ni,
.tl_i (tl_win_h2d[1]),
.tl_o (tl_win_d2h[1]),
.en_ifetch_i (tlul_pkg::InstrDis),
.req_o (rd_fifo_ren),
.gnt_i (rd_fifo_rvalid),
.we_o (),
.addr_o (),
.wmask_o (),
.wdata_o (),
.rdata_i (rd_fifo_rdata),
.rvalid_i (adapter_rvalid),
.rerror_i (2'b0)
);
prim_fifo_sync #(
.Width(BusWidth),
.Depth(FifoDepth)
) u_rd_fifo (
.clk_i,
.rst_ni,
.clr_i (reg2hw.fifo_rst.q | fifo_clr),
.wvalid_i(rd_fifo_wen),
.wready_o(rd_fifo_wready),
.wdata_i (rd_fifo_wdata),
.full_o (rd_fifo_full),
.depth_o (rd_fifo_depth),
.rvalid_o(rd_fifo_rvalid),
.rready_i(rd_fifo_rready),
.rdata_o (rd_fifo_rdata)
);
// Read handler is consumer of rd_fifo
flash_ctrl_rd u_flash_ctrl_rd (
.clk_i,
.rst_ni,
// To arbiter Interface
.op_start_i (op_start & rd_op),
.op_num_words_i (op_num_words),
.op_done_o (rd_done),
.op_err_o (rd_err),
.op_addr_i (op_addr),
// FIFO Interface
.data_rdy_i (rd_fifo_wready),
.data_o (rd_fifo_wdata),
.data_wr_o (rd_fifo_wen),
// Flash Macro Interface
.flash_req_o (rd_flash_req),
.flash_addr_o (rd_flash_addr),
.flash_ovfl_o (rd_flash_ovfl),
.flash_data_i (flash_rd_data),
.flash_done_i (flash_rd_done),
.flash_error_i (flash_mp_error | flash_rd_err)
);
// Erase handler does not consume fifo
flash_ctrl_erase u_flash_ctrl_erase (
// Software Interface
.op_start_i (op_start & erase_op),
.op_type_i (op_erase_type),
.op_done_o (erase_done),
.op_err_o (erase_err),
.op_addr_i (op_addr),
// Flash Macro Interface
.flash_req_o (erase_flash_req),
.flash_addr_o (erase_flash_addr),
.flash_op_o (erase_flash_type),
.flash_done_i (flash_erase_done),
.flash_error_i (flash_mp_error)
);
// Final muxing to flash macro module
always_comb begin
unique case (op_type)
FlashOpRead: begin
flash_req = rd_flash_req;
flash_addr = rd_flash_addr;
end
FlashOpProgram: begin
flash_req = prog_flash_req;
flash_addr = prog_flash_addr;
end
FlashOpErase: begin
flash_req = erase_flash_req;
flash_addr = erase_flash_addr;
end
default: begin
flash_req = 1'b0;
flash_addr = '0;
end
endcase // unique case (op_type)
end
//////////////////////////////////////
// Data partition properties configuration
//////////////////////////////////////
// extra region is the default region
mp_region_cfg_t [MpRegions:0] region_cfgs;
assign region_cfgs[MpRegions-1:0] = reg2hw.mp_region_cfg[MpRegions-1:0];
//default region
assign region_cfgs[MpRegions].base.q = '0;
assign region_cfgs[MpRegions].size.q = NumBanks * PagesPerBank;
assign region_cfgs[MpRegions].en.q = 1'b1;
assign region_cfgs[MpRegions].rd_en.q = reg2hw.default_region.rd_en.q;
assign region_cfgs[MpRegions].prog_en.q = reg2hw.default_region.prog_en.q;
assign region_cfgs[MpRegions].erase_en.q = reg2hw.default_region.erase_en.q;
assign region_cfgs[MpRegions].scramble_en.q = reg2hw.default_region.scramble_en.q;
assign region_cfgs[MpRegions].ecc_en.q = reg2hw.default_region.ecc_en.q;
assign region_cfgs[MpRegions].he_en.q = reg2hw.default_region.he_en.q;
//////////////////////////////////////
// Info partition properties configuration
//////////////////////////////////////
info_page_cfg_t [NumBanks-1:0][InfoTypes-1:0][InfosPerBank-1:0] reg2hw_info_page_cfgs;
info_page_cfg_t [NumBanks-1:0][InfoTypes-1:0][InfosPerBank-1:0] info_page_cfgs;
localparam int InfoBits = $bits(info_page_cfg_t) * InfosPerBank;
// transform from reg output to structure
// Not all types have the maximum number of banks, so those are packed to 0
% for bank in range(cfg['banks']):
% for idx in range(cfg['info_types']):
assign reg2hw_info_page_cfgs[${bank}][${idx}] = InfoBits'(reg2hw.bank${bank}_info${idx}_page_cfg);
% endfor
% endfor
// qualify reg2hw settings with creator / owner privileges
for(genvar i = 0; i < NumBanks; i++) begin : gen_info_priv_bank
for (genvar j = 0; j < InfoTypes; j++) begin : gen_info_priv_type
flash_ctrl_info_cfg # (
.Bank(i),
.InfoSel(j)
) u_info_cfg (
.cfgs_i(reg2hw_info_page_cfgs[i][j]),
.creator_seed_priv_i(creator_seed_priv),
.owner_seed_priv_i(owner_seed_priv),
.iso_flash_wr_en_i(lc_iso_part_sw_wr_en[0] == lc_ctrl_pkg::On),
.iso_flash_rd_en_i(lc_iso_part_sw_rd_en[0] == lc_ctrl_pkg::On),
.cfgs_o(info_page_cfgs[i][j])
);
end
end
//////////////////////////////////////
// flash memory properties
//////////////////////////////////////
// direct assignment since prog/rd/erase_ctrl do not make use of op_part
flash_part_e flash_part_sel;
logic [InfoTypesWidth-1:0] flash_info_sel;
assign flash_part_sel = op_part;
assign flash_info_sel = op_info_sel;
// tie off hardware clear path
assign hw2reg.erase_suspend.d = 1'b0;
// Flash memory Properties
// Memory property is page based and thus should use phy addressing
// This should move to flash_phy long term
flash_mp u_flash_mp (
.clk_i,
.rst_ni,
// arbiter interface selection
.if_sel_i(if_sel),
// sw configuration for data partition
.region_cfgs_i(region_cfgs),
.bank_cfgs_i(reg2hw.mp_bank_cfg),
// sw configuration for info partition
.info_page_cfgs_i(info_page_cfgs),
// read / prog / erase controls
.req_i(flash_req),
.phase_i(phase),
.req_addr_i(flash_addr[BusAddrW-1 -: AllPagesW]),
.req_part_i(flash_part_sel),
.info_sel_i(flash_info_sel),
.addr_ovfl_i(rd_flash_ovfl | prog_flash_ovfl),
.rd_i(rd_op),
.prog_i(prog_op),
.pg_erase_i(erase_op & (erase_flash_type == FlashErasePage)),
.bk_erase_i(erase_op & (erase_flash_type == FlashEraseBank)),
.erase_suspend_i(reg2hw.erase_suspend),
.erase_suspend_done_o(hw2reg.erase_suspend.de),
.rd_done_o(flash_rd_done),
.prog_done_o(flash_prog_done),
.erase_done_o(flash_erase_done),
.error_o(flash_mp_error),
.err_addr_o(err_addr),
// flash phy interface
.req_o(flash_o.req),
.scramble_en_o(flash_o.scramble_en),
.ecc_en_o(flash_o.ecc_en),
.he_en_o(flash_o.he_en),
.rd_o(flash_o.rd),
.prog_o(flash_o.prog),
.pg_erase_o(flash_o.pg_erase),
.bk_erase_o(flash_o.bk_erase),
.erase_suspend_o(flash_o.erase_suspend),
.rd_done_i(flash_i.rd_done),
.prog_done_i(flash_i.prog_done),
.erase_done_i(flash_i.erase_done)
);
// software interface feedback
// most values (other than flash_phy_busy) should only update when software operations
// are actually selected
assign hw2reg.op_status.done.d = 1'b1;
assign hw2reg.op_status.done.de = sw_ctrl_done;
assign hw2reg.op_status.err.d = 1'b1;
assign hw2reg.op_status.err.de = sw_ctrl_err;
assign hw2reg.status.rd_full.d = rd_fifo_full;
assign hw2reg.status.rd_full.de = sw_sel;
assign hw2reg.status.rd_empty.d = ~rd_fifo_rvalid;
assign hw2reg.status.rd_empty.de = sw_sel;
assign hw2reg.status.prog_full.d = ~prog_fifo_wready;
assign hw2reg.status.prog_full.de = sw_sel;
assign hw2reg.status.prog_empty.d = ~prog_fifo_rvalid;
assign hw2reg.status.prog_empty.de = sw_sel;
assign hw2reg.status.init_wip.d = flash_phy_busy | ctrl_init_busy;
assign hw2reg.status.init_wip.de = 1'b1;
assign hw2reg.control.start.d = 1'b0;
assign hw2reg.control.start.de = sw_ctrl_done;
// if software operation selected, based on transaction start
// if software operation not selected, software is free to change contents
assign hw2reg.ctrl_regwen.d = sw_sel ? !op_start : 1'b1;
// phy status
assign hw2reg.phy_status.init_wip.d = flash_phy_busy;
assign hw2reg.phy_status.init_wip.de = 1'b1;
assign hw2reg.phy_status.prog_normal_avail.d = flash_i.prog_type_avail[FlashProgNormal];
assign hw2reg.phy_status.prog_normal_avail.de = 1'b1;
assign hw2reg.phy_status.prog_repair_avail.d = flash_i.prog_type_avail[FlashProgRepair];
assign hw2reg.phy_status.prog_repair_avail.de = 1'b1;
// Flash Interface
assign flash_o.addr = flash_addr;
assign flash_o.part = flash_part_sel;
assign flash_o.info_sel = flash_info_sel;
assign flash_o.prog_type = flash_prog_type;
assign flash_o.prog_data = flash_prog_data;
assign flash_o.prog_last = flash_prog_last;
assign flash_o.region_cfgs = region_cfgs;
assign flash_o.addr_key = addr_key;
assign flash_o.data_key = data_key;
assign flash_o.tl_flash_c2p = tl_win_h2d[2];
assign flash_o.alert_trig = reg2hw.phy_alert_cfg.alert_trig.q;
assign flash_o.alert_ack = reg2hw.phy_alert_cfg.alert_ack.q;
assign flash_o.jtag_req.tck = cio_tck_i;
assign flash_o.jtag_req.tms = cio_tms_i;
assign flash_o.jtag_req.tdi = cio_tdi_i;
assign flash_o.jtag_req.trst_n = '0;
assign cio_tdo_o = flash_i.jtag_rsp.tdo;
assign cio_tdo_en_o = flash_i.jtag_rsp.tdo_oe;
assign flash_rd_err = flash_i.rd_err;
assign flash_rd_data = flash_i.rd_data;
assign flash_phy_busy = flash_i.init_busy;
// Interface to pwrmgr
// flash is not idle as long as there is a stateful operation ongoing
logic flash_idle_d;
assign flash_idle_d = ~(flash_o.req &
(flash_o.prog | flash_o.pg_erase | flash_o.bk_erase));
prim_flop #(
.Width(1),
.ResetValue(1'b1)
) u_reg_idle (
.clk_i,
.rst_ni,
.d_i(flash_idle_d),
.q_o(pwrmgr_o.flash_idle)
);
//////////////////////////////////////
// Alert senders
//////////////////////////////////////
logic [NumAlerts-1:0] alert_srcs;
logic [NumAlerts-1:0] alert_tests;
logic recov_err;
assign recov_err = flash_i.flash_alert_p | ~flash_i.flash_alert_n;
logic recov_mp_err;
assign recov_mp_err = flash_mp_error;
logic recov_ecc_err;
assign recov_ecc_err = |flash_i.ecc_single_err | |flash_i.ecc_multi_err;
assign alert_srcs = { recov_ecc_err,
recov_mp_err,
recov_err
};
assign alert_tests = { reg2hw.alert_test.recov_ecc_err.q & reg2hw.alert_test.recov_ecc_err.qe,
reg2hw.alert_test.recov_mp_err.q & reg2hw.alert_test.recov_mp_err.qe,
reg2hw.alert_test.recov_err.q & reg2hw.alert_test.recov_err.qe
};
for (genvar i = 0; i < NumAlerts; i++) begin : gen_alert_senders
prim_alert_sender #(
.AsyncOn(AlertAsyncOn)
) u_alert_sender (
.clk_i,
.rst_ni,
.alert_req_i(alert_srcs[i]),
.alert_test_i(alert_tests[i]),
.alert_ack_o(),
.alert_state_o(),
.alert_rx_i(alert_rx_i[i]),
.alert_tx_o(alert_tx_o[i])
);
end
//////////////////////////////////////
// Errors and Interrupts
//////////////////////////////////////
assign hw2reg.err_code.mp_err.d = 1'b1;
assign hw2reg.err_code.ecc_single_err.d = 1'b1;
assign hw2reg.err_code.ecc_multi_err.d = 1'b1;
assign hw2reg.err_code.flash_err.d = 1'b1;
assign hw2reg.err_code.flash_alert.d = 1'b1;
assign hw2reg.err_code.mp_err.de = flash_mp_error;
assign hw2reg.err_code.ecc_single_err.de = |flash_i.ecc_single_err;
assign hw2reg.err_code.ecc_multi_err.de = |flash_i.ecc_multi_err;
assign hw2reg.err_code.flash_err.de = flash_i.flash_err;
assign hw2reg.err_code.flash_alert.de = flash_i.flash_alert_p | ~flash_i.flash_alert_n;
assign hw2reg.err_addr.d = err_addr;
assign hw2reg.err_addr.de = flash_mp_error;
for (genvar bank = 0; bank < NumBanks; bank++) begin : gen_err_cons
assign hw2reg.ecc_err_addr[bank].d = {flash_i.ecc_addr[bank], {BusByteWidth{1'b0}}};
assign hw2reg.ecc_err_addr[bank].de = flash_i.ecc_single_err[bank] |
flash_i.ecc_multi_err[bank];
end
// Generate edge triggered signals for sources that are level
logic [3:0] intr_src;
logic [3:0] intr_src_q;
logic [3:0] intr_assert;
assign intr_src = { ~prog_fifo_rvalid,
reg2hw.fifo_lvl.prog.q == prog_fifo_depth,
rd_fifo_full,
reg2hw.fifo_lvl.rd.q == rd_fifo_depth
};
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intr_src_q <= 4'h8; //prog_fifo is empty by default
end else if (sw_sel) begin
intr_src_q <= intr_src;
end
end
assign intr_assert = ~intr_src_q & intr_src;
assign intr_prog_empty_o = reg2hw.intr_enable.prog_empty.q & reg2hw.intr_state.prog_empty.q;
assign intr_prog_lvl_o = reg2hw.intr_enable.prog_lvl.q & reg2hw.intr_state.prog_lvl.q;
assign intr_rd_full_o = reg2hw.intr_enable.rd_full.q & reg2hw.intr_state.rd_full.q;
assign intr_rd_lvl_o = reg2hw.intr_enable.rd_lvl.q & reg2hw.intr_state.rd_lvl.q;
assign intr_op_done_o = reg2hw.intr_enable.op_done.q & reg2hw.intr_state.op_done.q;
assign hw2reg.intr_state.prog_empty.d = 1'b1;
assign hw2reg.intr_state.prog_empty.de = intr_assert[3] |
(reg2hw.intr_test.prog_empty.qe &
reg2hw.intr_test.prog_empty.q);
assign hw2reg.intr_state.prog_lvl.d = 1'b1;
assign hw2reg.intr_state.prog_lvl.de = intr_assert[2] |
(reg2hw.intr_test.prog_lvl.qe &
reg2hw.intr_test.prog_lvl.q);
assign hw2reg.intr_state.rd_full.d = 1'b1;
assign hw2reg.intr_state.rd_full.de = intr_assert[1] |
(reg2hw.intr_test.rd_full.qe &
reg2hw.intr_test.rd_full.q);
assign hw2reg.intr_state.rd_lvl.d = 1'b1;
assign hw2reg.intr_state.rd_lvl.de = intr_assert[0] |
(reg2hw.intr_test.rd_lvl.qe &
reg2hw.intr_test.rd_lvl.q);
assign hw2reg.intr_state.op_done.d = 1'b1;
assign hw2reg.intr_state.op_done.de = sw_ctrl_done |
(reg2hw.intr_test.op_done.qe &
reg2hw.intr_test.op_done.q);
// Unused bits
logic [BusByteWidth-1:0] unused_byte_sel;
logic [top_pkg::TL_AW-1-BusAddrW:0] unused_higher_addr_bits;
logic [top_pkg::TL_AW-1:0] unused_scratch;
// Unused signals
assign unused_byte_sel = muxed_addr[BusByteWidth-1:0];
assign unused_higher_addr_bits = muxed_addr[top_pkg::TL_AW-1:BusAddrW];
assign unused_scratch = reg2hw.scratch;
// Assertions
`ASSERT_KNOWN(TlDValidKnownO_A, tl_o.d_valid )
`ASSERT_KNOWN(TlAReadyKnownO_A, tl_o.a_ready )
`ASSERT_KNOWN(FlashKnownO_A, {flash_o.req, flash_o.rd, flash_o.prog, flash_o.pg_erase,
flash_o.bk_erase})
`ASSERT_KNOWN_IF(FlashAddrKnown_A, flash_o.addr, flash_o.req)
`ASSERT_KNOWN_IF(FlashProgKnown_A, flash_o.prog_data, flash_o.prog & flash_o.req)
`ASSERT_KNOWN(IntrProgEmptyKnownO_A, intr_prog_empty_o)
`ASSERT_KNOWN(IntrProgLvlKnownO_A, intr_prog_lvl_o )
`ASSERT_KNOWN(IntrProgRdFullKnownO_A, intr_rd_full_o )
`ASSERT_KNOWN(IntrRdLvlKnownO_A, intr_rd_lvl_o )
`ASSERT_KNOWN(IntrOpDoneKnownO_A, intr_op_done_o )
endmodule