blob: 5fca6c61d3b8e5dc2109bc7f57cce8c3a251ed09 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Flash Controller for life cycle / key management handling
//
module flash_ctrl_lcmgr import flash_ctrl_pkg::*; #(
parameter flash_key_t RndCnstAddrKey = RndCnstAddrKeyDefault,
parameter flash_key_t RndCnstDataKey = RndCnstDataKeyDefault
) (
input clk_i,
input rst_ni,
input clk_otp_i,
input rst_otp_ni,
// initialization command
input init_i,
// only access seeds when provisioned
input provision_en_i,
// interface to ctrl arb control ports
output flash_ctrl_reg_pkg::flash_ctrl_reg2hw_control_reg_t ctrl_o,
output logic req_o,
output logic [top_pkg::TL_AW-1:0] addr_o,
input done_i,
input err_i,
// interface to ctrl_arb data ports
output logic rready_o,
input rvalid_i,
output logic wvalid_o,
input wready_i,
// direct form rd_fifo
input [BusWidth-1:0] rdata_i,
// direct to wr_fifo
output logic [BusWidth-1:0] wdata_o,
// external rma request
// This should be simplified to just multi-bit request and multi-bit response
input lc_ctrl_pkg::lc_tx_t rma_req_i,
output lc_ctrl_pkg::lc_tx_t rma_ack_o,
// seeds to the outside world,
output logic [NumSeeds-1:0][SeedWidth-1:0] seeds_o,
// indicate to memory protection what phase the hw interface is in
output flash_lcmgr_phase_e phase_o,
// error status to registers
output logic seed_err_o,
// enable read buffer in flash_phy
output logic rd_buf_en_o,
// request otp keys
output otp_ctrl_pkg::flash_otp_key_req_t otp_key_req_o,
input otp_ctrl_pkg::flash_otp_key_rsp_t otp_key_rsp_i,
output flash_key_t addr_key_o,
output flash_key_t data_key_o,
output flash_key_t rand_addr_key_o,
output flash_key_t rand_data_key_o,
// entropy interface
output logic edn_req_o,
input edn_ack_i,
output logic lfsr_en_o,
input [BusWidth-1:0] rand_i,
// init ongoing
output logic init_busy_o
);
// total number of pages to be wiped during RMA entry
localparam int unsigned WipeIdxWidth = prim_util_pkg::vbits(WipeEntries);
localparam int unsigned MaxWipeEntry = WipeEntries - 1;
// seed related local params
localparam int unsigned SeedReads = SeedWidth / BusWidth;
localparam int unsigned SeedRdsWidth = $clog2(SeedReads);
localparam int unsigned SeedCntWidth = $clog2(NumSeeds+1);
localparam int unsigned NumSeedWidth = $clog2(NumSeeds);
// the various seed outputs
logic [NumSeeds-1:0][SeedReads-1:0][BusWidth-1:0] seeds_q;
// progress through and read out the various pieces of content
// This FSM should become sparse, especially for StRmaRsp
typedef enum logic [3:0] {
StIdle,
StReqAddrKey,
StReqDataKey,
StReadSeeds,
StWait,
StEntropyReseed,
StRmaWipe,
StRmaRsp,
StInvalid
} state_e;
state_e state_q, state_d;
lc_ctrl_pkg::lc_tx_t err_sts;
logic err_sts_set;
lc_ctrl_pkg::lc_tx_t rma_ack_d, rma_ack_q;
logic validate_q, validate_d;
logic [SeedCntWidth-1:0] seed_cnt_q;
logic [SeedRdsWidth-1:0] addr_cnt_q;
logic seed_cnt_en, seed_cnt_clr;
logic addr_cnt_en, addr_cnt_clr;
logic rma_wipe_req, rma_wipe_done;
logic [WipeIdxWidth-1:0] rma_wipe_idx;
logic rma_wipe_idx_incr;
flash_lcmgr_phase_e phase;
logic seed_phase;
logic rma_phase;
assign seed_phase = phase == PhaseSeed;
assign rma_phase = phase == PhaseRma;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
state_q <= StIdle;
rma_ack_q <= lc_ctrl_pkg::Off;
validate_q <= 1'b0;
end else begin
state_q <= state_d;
rma_ack_q <= rma_ack_d;
validate_q <= validate_d;
end
end
// seed cnt tracks which seed round we are handling at the moment
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
seed_cnt_q <= '0;
end else if (seed_cnt_clr) begin
seed_cnt_q <= '0;
end else if (seed_cnt_en) begin
seed_cnt_q <= seed_cnt_q + 1'b1;
end
end
// addr cnt tracks how far we are in an address looop
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
addr_cnt_q <= '0;
end else if (addr_cnt_clr) begin
addr_cnt_q <= '0;
end else if (addr_cnt_en) begin
addr_cnt_q <= addr_cnt_q + 1'b1;
end
end
// capture the seed values
logic [SeedRdsWidth-1:0] rd_idx;
logic [NumSeedWidth-1:0] seed_idx;
assign rd_idx = addr_cnt_q[SeedRdsWidth-1:0];
assign seed_idx = seed_cnt_q[NumSeedWidth-1:0];
always_ff @(posedge clk_i) begin
// validate current value
if (seed_phase && validate_q && rvalid_i) begin
seeds_q[seed_idx][rd_idx] <= seeds_q[seed_idx][rd_idx] &
rdata_i;
end else if (seed_phase && rvalid_i) begin
seeds_q[seed_idx][rd_idx] <= rdata_i;
end
end
page_addr_t seed_page;
logic [InfoTypesWidth-1:0] seed_info_sel;
logic [BusAddrW-1:0] seed_page_addr;
assign seed_page = SeedInfoPageSel[seed_idx];
assign seed_info_sel = seed_page.sel;
assign seed_page_addr = BusAddrW'({seed_page.addr, BusWordW'(0)});
logic start;
flash_op_e op;
flash_prog_e prog_type;
flash_erase_e erase_type;
flash_part_e part_sel;
logic [InfoTypesWidth-1:0] info_sel;
logic [11:0] num_words;
logic [BusAddrW-1:0] addr;
assign prog_type = FlashProgNormal;
assign erase_type = FlashErasePage;
// seed phase is always read
// rma phase is erase unless we are validating
assign op = FlashOpRead;
// synchronize inputs
logic init_q;
lc_ctrl_pkg::lc_tx_t [0:0] rma_req;
prim_flop_2sync #(
.Width(1),
.ResetValue(0)
) u_sync_flash_init (
.clk_i,
.rst_ni,
.d_i(init_i),
.q_o(init_q)
);
prim_lc_sync #(
.NumCopies(1)
) u_sync_rma_req (
.clk_i,
.rst_ni,
.lc_en_i(rma_req_i),
.lc_en_o(rma_req)
);
logic addr_key_req_d;
logic addr_key_ack_q;
logic data_key_req_d;
logic data_key_ack_q;
// req/ack to otp
prim_sync_reqack u_addr_sync_reqack (
.clk_src_i(clk_i),
.rst_src_ni(rst_ni),
.clk_dst_i(clk_otp_i),
.rst_dst_ni(rst_otp_ni),
.src_req_i(addr_key_req_d),
.src_ack_o(addr_key_ack_q),
.dst_req_o(otp_key_req_o.addr_req),
.dst_ack_i(otp_key_rsp_i.addr_ack)
);
// req/ack to otp
prim_sync_reqack u_data_sync_reqack (
.clk_src_i(clk_i),
.rst_src_ni(rst_ni),
.clk_dst_i(clk_otp_i),
.rst_dst_ni(rst_otp_ni),
.src_req_i(data_key_req_d),
.src_ack_o(data_key_ack_q),
.dst_req_o(otp_key_req_o.data_req),
.dst_ack_i(otp_key_rsp_i.data_ack)
);
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
addr_key_o <= RndCnstAddrKey;
data_key_o <= RndCnstDataKey;
end else begin
if (addr_key_req_d && addr_key_ack_q) begin
addr_key_o <= flash_key_t'(otp_key_rsp_i.key);
rand_addr_key_o <= flash_key_t'(otp_key_rsp_i.rand_key);
end
if (data_key_req_d && data_key_ack_q) begin
data_key_o <= flash_key_t'(otp_key_rsp_i.key);
rand_data_key_o <= flash_key_t'(otp_key_rsp_i.rand_key);
end
end
end
///////////////////////////////
// Hardware Interface FSM
// TODO: Merge the read/verify mechanism with RMA later
///////////////////////////////
always_comb begin
// phases of the hardware interface
phase = PhaseNone;
// timer controls
seed_cnt_en = 1'b0;
seed_cnt_clr = 1'b0;
addr_cnt_en = 1'b0;
addr_cnt_clr = 1'b0;
// flash ctrrl arb controls
start = 1'b0;
addr = '0;
part_sel = FlashPartInfo;
info_sel = 0;
num_words = SeedReads[11:0] - 12'd1;
// seed status
seed_err_o = 1'b0;
state_d = state_q;
rma_ack_d = lc_ctrl_pkg::Off;
validate_d = validate_q;
// read buffer enable
rd_buf_en_o = 1'b0;
addr_key_req_d = 1'b0;
data_key_req_d = 1'b0;
// entropy handling
edn_req_o = 1'b0;
lfsr_en_o = 1'b0;
// rma related
rma_wipe_req = 1'b0;
rma_wipe_idx_incr = 1'b0;
unique case (state_q)
StIdle: begin
if (init_q) begin
state_d = StReqAddrKey;
end
end
StReqAddrKey: begin
phase = PhaseSeed;
addr_key_req_d = 1'b1;
if (addr_key_ack_q) begin
state_d = StReqDataKey;
end
end
StReqDataKey: begin
phase = PhaseSeed;
data_key_req_d = 1'b1;
if (data_key_ack_q) begin
// provision_en is only a "good" value after otp/lc initialization
state_d = provision_en_i ? StReadSeeds : StWait;
end
end
// read seeds
StReadSeeds: begin
// seeds can be updated in this state
phase = PhaseSeed;
// kick off flash transaction
start = 1'b1;
addr = BusAddrW'(seed_page_addr);
info_sel = seed_info_sel;
// we have checked all seeds, proceed
if (seed_cnt_q == NumSeeds) begin
start = 1'b0;
state_d = StWait;
// still reading curent seed, increment whenever data returns
end else if (!done_i) begin
addr_cnt_en = rvalid_i;
// current seed reading is complete
// error is intentionally not used here, as we do not want read seed
// failures to stop the software from using flash
// When there are upstream failures, the data returned is simply all 1's.
// So instead of doing anything explicit, a status is indicated for software.
end else if (done_i) begin
addr_cnt_clr = 1'b1;
seed_err_o = 1'b1;
// we move to the next seed only if current seed is read and validated
// if not, flip to validate phase and read seed again
if (validate_q) begin
seed_cnt_en = 1'b1;
validate_d = 1'b0;
end else begin
validate_d = 1'b1;
end
end
end
// Waiting for an rma entry command
StWait: begin
rd_buf_en_o = 1'b1;
if (rma_req[0] == lc_ctrl_pkg::On) begin
state_d = StEntropyReseed;
end
end
// Reseed entropy
StEntropyReseed: begin
edn_req_o = 1'b1;
if(edn_ack_i) begin
state_d = StRmaWipe;
end
end
StRmaWipe: begin
phase = PhaseRma;
lfsr_en_o = 1'b1;
rma_wipe_req = 1'b1;
if (rma_wipe_idx == MaxWipeEntry[WipeIdxWidth-1:0] && rma_wipe_done) begin
// first check for error status
// If error status is set, go directly to invalid terminal state
// If error status is good, go to second check
state_d = (err_sts != lc_ctrl_pkg::On) ? StInvalid : StRmaRsp;
end else if (rma_wipe_done) begin
rma_wipe_idx_incr = 1;
end
end
// response to rma request
// Second check for error status:
// If error status indicates error, jump to invalid terminal state
// Otherwise assign output to error status;
// TODO: consider lengthening the check
StRmaRsp: begin
phase = PhaseRma;
if (err_sts != lc_ctrl_pkg::On) begin
state_d = StInvalid;
end else begin
rma_ack_d = err_sts;
end
end
// Invalid catch-all state
default: begin
phase = PhaseInvalid;
rma_ack_d = lc_ctrl_pkg::Off;
state_d = StInvalid;
end
endcase // unique case (state_q)
end // always_comb
///////////////////////////////
// RMA wiping Mechanism
///////////////////////////////
localparam int unsigned PageCntWidth = prim_util_pkg::vbits(PagesPerBank + 1);
localparam int unsigned WordCntWidth = prim_util_pkg::vbits(BusWordsPerPage + 1);
localparam int unsigned BeatCntWidth = prim_util_pkg::vbits(WidthMultiple);
localparam int unsigned MaxBeatCnt = WidthMultiple - 1;
logic page_cnt_ld;
logic page_cnt_incr;
logic page_cnt_clr;
logic word_cnt_incr;
logic word_cnt_clr;
logic prog_cnt_en;
logic rd_cnt_en;
logic beat_cnt_clr;
logic [PageCntWidth-1:0] page_cnt, end_page;
logic [WordCntWidth-1:0] word_cnt;
logic [BeatCntWidth-1:0] beat_cnt;
logic [WidthMultiple-1:0][BusWidth-1:0] prog_data;
assign end_page = RmaWipeEntries[rma_wipe_idx].start_page +
RmaWipeEntries[rma_wipe_idx].num_pages;
typedef enum logic [2:0] {
StRmaIdle,
StRmaPageSel,
StRmaErase,
StRmaWordSel,
StRmaProgram,
StRmaProgramWait,
StRmaRdVerify
} rma_state_e;
rma_state_e rma_state_d, rma_state_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rma_state_q <= StRmaIdle;
end else begin
rma_state_q <= rma_state_d;
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
page_cnt <= '0;
end else if (page_cnt_clr) begin
page_cnt <= '0;
end else if (page_cnt_ld) begin
page_cnt <= RmaWipeEntries[rma_wipe_idx].start_page;
end else if (page_cnt_incr) begin
page_cnt <= page_cnt + 1'b1;
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
word_cnt <= '0;
end else if (word_cnt_clr) begin
word_cnt <= '0;
end else if (word_cnt_incr) begin
word_cnt <= word_cnt + WidthMultiple;
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rma_wipe_idx <= '0;
end else if (rma_wipe_idx_incr) begin
rma_wipe_idx <= rma_wipe_idx + 1'b1;
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
beat_cnt <= '0;
end else if (beat_cnt_clr) begin
beat_cnt <= '0;
end else if (prog_cnt_en) begin
if (wvalid_o && wready_i) begin
beat_cnt <= beat_cnt + 1'b1;
end
end else if (rd_cnt_en) begin
if (rvalid_i && rready_o) begin
beat_cnt <= beat_cnt + 1'b1;
end
end
end
// latch data programmed
always_ff @(posedge clk_i) begin
if (prog_cnt_en && wvalid_o && wready_i) begin
prog_data[beat_cnt] <= rand_i;
end
end
// once error is set to off, it cannot be unset without a reboot
// On - no errors
// Off - errors were observed
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_sts <= lc_ctrl_pkg::On;
end else if (err_sts_set && (err_sts != lc_ctrl_pkg::Off)) begin
err_sts <= lc_ctrl_pkg::Off;
end
end
logic rma_start;
logic [BusAddrW-1:0] rma_addr;
flash_op_e rma_op;
flash_part_e rma_part_sel;
logic [InfoTypesWidth-1:0] rma_info_sel;
logic [11:0] rma_num_words;
assign rma_addr = {RmaWipeEntries[rma_wipe_idx].bank,
page_cnt[PageW-1:0],
word_cnt[BusWordW-1:0]};
assign rma_part_sel = RmaWipeEntries[rma_wipe_idx].part;
assign rma_info_sel = RmaWipeEntries[rma_wipe_idx].info_sel;
assign rma_num_words = WidthMultiple - 1;
//fsm for handling the actual wipe
always_comb begin
rma_state_d = rma_state_q;
rma_wipe_done = 1'b0;
rma_start = 1'b0;
rma_op = FlashOpInvalid;
err_sts_set = 1'b0;
page_cnt_ld = 1'b0;
page_cnt_incr = 1'b0;
page_cnt_clr = 1'b0;
word_cnt_incr = 1'b0;
word_cnt_clr = 1'b0;
prog_cnt_en = 1'b0;
rd_cnt_en = 1'b0;
beat_cnt_clr = 1'b0;
unique case (rma_state_q)
StRmaIdle: begin
if (rma_wipe_req) begin
rma_state_d = StRmaPageSel;
page_cnt_ld = 1'b1;
end
end
StRmaPageSel: begin
if (page_cnt < end_page) begin
rma_state_d = StRmaErase;
end else begin
rma_wipe_done = 1'b1;
page_cnt_clr = 1'b1;
rma_state_d = StRmaIdle;
end
end
StRmaErase: begin
rma_start = 1'b1;
rma_op = FlashOpErase;
if (done_i) begin
err_sts_set = err_i;
rma_state_d = StRmaWordSel;
end
end
StRmaWordSel: begin
if (word_cnt < BusWordsPerPage) begin
rma_state_d = StRmaProgram;
end else begin
word_cnt_clr = 1'b1;
page_cnt_incr = 1'b1;
rma_state_d = StRmaPageSel;
end
end
StRmaProgram: begin
rma_start = 1'b1;
rma_op = FlashOpProgram;
prog_cnt_en = 1'b1;
if ((beat_cnt == MaxBeatCnt[BeatCntWidth-1:0]) && wready_i) begin
rma_state_d = StRmaProgramWait;
end
end
StRmaProgramWait: begin
rma_start = 1'b1;
rma_op = FlashOpProgram;
if (done_i) begin
beat_cnt_clr = 1'b1;
err_sts_set = err_i;
rma_state_d = StRmaRdVerify;
end
end
StRmaRdVerify: begin
rma_start = 1'b1;
rma_op = FlashOpRead;
rd_cnt_en = 1'b1;
if ((beat_cnt == MaxBeatCnt[BeatCntWidth-1:0]) && done_i) begin
beat_cnt_clr = 1'b1;
word_cnt_incr = 1'b1;
rma_state_d = StRmaWordSel;
end
if (rvalid_i && rready_o) begin
err_sts_set = prog_data[beat_cnt] != rdata_i;
end
end
default: begin
err_sts_set = 1'b1;
end
endcase // unique case (rma_state_q)
end // always_comb
assign wdata_o = rand_i;
assign wvalid_o = prog_cnt_en;
assign ctrl_o.start.q = seed_phase ? start : rma_start;
assign ctrl_o.op.q = seed_phase ? op : rma_op;
assign ctrl_o.prog_sel.q = prog_type;
assign ctrl_o.erase_sel.q = erase_type;
assign ctrl_o.partition_sel.q = seed_phase ? part_sel : rma_part_sel;
assign ctrl_o.info_sel.q = seed_phase ? info_sel : rma_info_sel;
assign ctrl_o.num = seed_phase ? num_words : rma_num_words;
// address is consistent with software width format (full bus)
assign addr_o = seed_phase ? top_pkg::TL_AW'({addr, {BusByteWidth{1'b0}}}) :
top_pkg::TL_AW'({rma_addr, {BusByteWidth{1'b0}}});
assign init_busy_o = seed_phase;
assign req_o = seed_phase | rma_phase;
assign rready_o = 1'b1;
assign seeds_o = seeds_q;
assign phase_o = phase;
assign rma_ack_o = rma_ack_q;
logic unused_seed_valid;
assign unused_seed_valid = otp_key_rsp_i.seed_valid;
endmodule // flash_ctrl_lcmgr