blob: 9a2b40fc8475e31c1617c31ea84b192a5b6ca518 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module otbn_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o [2],
input tlul_pkg::tl_d2h_t tl_win_i [2],
// To HW
output otbn_reg_pkg::otbn_reg2hw_t reg2hw, // Write
input otbn_reg_pkg::otbn_hw2reg_t hw2reg, // Read
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import otbn_reg_pkg::* ;
localparam int AW = 22;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
tlul_pkg::tl_h2d_t tl_socket_h2d [3];
tlul_pkg::tl_d2h_t tl_socket_d2h [3];
logic [1:0] reg_steer;
// socket_1n connection
assign tl_reg_h2d = tl_socket_h2d[2];
assign tl_socket_d2h[2] = tl_reg_d2h;
assign tl_win_o[0] = tl_socket_h2d[0];
assign tl_socket_d2h[0] = tl_win_i[0];
assign tl_win_o[1] = tl_socket_h2d[1];
assign tl_socket_d2h[1] = tl_win_i[1];
// Create Socket_1n
tlul_socket_1n #(
.N (3),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({3{1'b1}}),
.DRspPass ({3{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({3{4'h0}}),
.DRspDepth ({3{4'h0}})
) u_socket (
.clk_i,
.rst_ni,
.tl_h_i (tl_i),
.tl_h_o (tl_o),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer = 2; // Default set to register
// TODO: Can below codes be unique case () inside ?
if (tl_i.a_address[AW-1:0] >= 1048576 && tl_i.a_address[AW-1:0] < 1052672) begin
reg_steer = 0;
end
if (tl_i.a_address[AW-1:0] >= 2097152 && tl_i.a_address[AW-1:0] < 2101248) begin
reg_steer = 1;
end
end
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err ;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_done_qs;
logic intr_state_done_wd;
logic intr_state_done_we;
logic intr_state_err_qs;
logic intr_state_err_wd;
logic intr_state_err_we;
logic intr_enable_done_qs;
logic intr_enable_done_wd;
logic intr_enable_done_we;
logic intr_enable_err_qs;
logic intr_enable_err_wd;
logic intr_enable_err_we;
logic intr_test_done_wd;
logic intr_test_done_we;
logic intr_test_err_wd;
logic intr_test_err_we;
logic alert_test_imem_uncorrectable_wd;
logic alert_test_imem_uncorrectable_we;
logic alert_test_dmem_uncorrectable_wd;
logic alert_test_dmem_uncorrectable_we;
logic alert_test_reg_uncorrectable_wd;
logic alert_test_reg_uncorrectable_we;
logic cmd_start_wd;
logic cmd_start_we;
logic cmd_dummy_wd;
logic cmd_dummy_we;
logic status_busy_qs;
logic status_busy_re;
logic status_dummy_qs;
logic status_dummy_re;
logic [31:0] err_code_qs;
logic [31:0] start_addr_wd;
logic start_addr_we;
// Register instances
// R[intr_state]: V(False)
// F[done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_done (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_done_we),
.wd (intr_state_done_wd),
// from internal hardware
.de (hw2reg.intr_state.done.de),
.d (hw2reg.intr_state.done.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.done.q ),
// to register interface (read)
.qs (intr_state_done_qs)
);
// F[err]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_err (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_err_we),
.wd (intr_state_err_wd),
// from internal hardware
.de (hw2reg.intr_state.err.de),
.d (hw2reg.intr_state.err.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.err.q ),
// to register interface (read)
.qs (intr_state_err_qs)
);
// R[intr_enable]: V(False)
// F[done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_done (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_done_we),
.wd (intr_enable_done_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.done.q ),
// to register interface (read)
.qs (intr_enable_done_qs)
);
// F[err]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_err (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_err_we),
.wd (intr_enable_err_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.err.q ),
// to register interface (read)
.qs (intr_enable_err_qs)
);
// R[intr_test]: V(True)
// F[done]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_done (
.re (1'b0),
.we (intr_test_done_we),
.wd (intr_test_done_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.done.qe),
.q (reg2hw.intr_test.done.q ),
.qs ()
);
// F[err]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_err (
.re (1'b0),
.we (intr_test_err_we),
.wd (intr_test_err_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.err.qe),
.q (reg2hw.intr_test.err.q ),
.qs ()
);
// R[alert_test]: V(True)
// F[imem_uncorrectable]: 0:0
prim_subreg_ext #(
.DW (1)
) u_alert_test_imem_uncorrectable (
.re (1'b0),
.we (alert_test_imem_uncorrectable_we),
.wd (alert_test_imem_uncorrectable_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.imem_uncorrectable.qe),
.q (reg2hw.alert_test.imem_uncorrectable.q ),
.qs ()
);
// F[dmem_uncorrectable]: 1:1
prim_subreg_ext #(
.DW (1)
) u_alert_test_dmem_uncorrectable (
.re (1'b0),
.we (alert_test_dmem_uncorrectable_we),
.wd (alert_test_dmem_uncorrectable_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.dmem_uncorrectable.qe),
.q (reg2hw.alert_test.dmem_uncorrectable.q ),
.qs ()
);
// F[reg_uncorrectable]: 2:2
prim_subreg_ext #(
.DW (1)
) u_alert_test_reg_uncorrectable (
.re (1'b0),
.we (alert_test_reg_uncorrectable_we),
.wd (alert_test_reg_uncorrectable_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.reg_uncorrectable.qe),
.q (reg2hw.alert_test.reg_uncorrectable.q ),
.qs ()
);
// R[cmd]: V(True)
// F[start]: 0:0
prim_subreg_ext #(
.DW (1)
) u_cmd_start (
.re (1'b0),
.we (cmd_start_we),
.wd (cmd_start_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.start.qe),
.q (reg2hw.cmd.start.q ),
.qs ()
);
// F[dummy]: 1:1
prim_subreg_ext #(
.DW (1)
) u_cmd_dummy (
.re (1'b0),
.we (cmd_dummy_we),
.wd (cmd_dummy_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.dummy.qe),
.q (reg2hw.cmd.dummy.q ),
.qs ()
);
// R[status]: V(True)
// F[busy]: 0:0
prim_subreg_ext #(
.DW (1)
) u_status_busy (
.re (status_busy_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.busy.d),
.qre (),
.qe (),
.q (),
.qs (status_busy_qs)
);
// F[dummy]: 1:1
prim_subreg_ext #(
.DW (1)
) u_status_dummy (
.re (status_dummy_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.dummy.d),
.qre (),
.qe (),
.q (),
.qs (status_dummy_qs)
);
// R[err_code]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RO"),
.RESVAL (32'h0)
) u_err_code (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.err_code.de),
.d (hw2reg.err_code.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_qs)
);
// R[start_addr]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_start_addr (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (start_addr_we),
.wd (start_addr_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.start_addr.q ),
.qs ()
);
logic [7:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == OTBN_INTR_STATE_OFFSET);
addr_hit[1] = (reg_addr == OTBN_INTR_ENABLE_OFFSET);
addr_hit[2] = (reg_addr == OTBN_INTR_TEST_OFFSET);
addr_hit[3] = (reg_addr == OTBN_ALERT_TEST_OFFSET);
addr_hit[4] = (reg_addr == OTBN_CMD_OFFSET);
addr_hit[5] = (reg_addr == OTBN_STATUS_OFFSET);
addr_hit[6] = (reg_addr == OTBN_ERR_CODE_OFFSET);
addr_hit[7] = (reg_addr == OTBN_START_ADDR_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[0] && reg_we && (OTBN_PERMIT[0] != (OTBN_PERMIT[0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[1] && reg_we && (OTBN_PERMIT[1] != (OTBN_PERMIT[1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[2] && reg_we && (OTBN_PERMIT[2] != (OTBN_PERMIT[2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[3] && reg_we && (OTBN_PERMIT[3] != (OTBN_PERMIT[3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[4] && reg_we && (OTBN_PERMIT[4] != (OTBN_PERMIT[4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[5] && reg_we && (OTBN_PERMIT[5] != (OTBN_PERMIT[5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[6] && reg_we && (OTBN_PERMIT[6] != (OTBN_PERMIT[6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[7] && reg_we && (OTBN_PERMIT[7] != (OTBN_PERMIT[7] & reg_be))) wr_err = 1'b1 ;
end
assign intr_state_done_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_done_wd = reg_wdata[0];
assign intr_state_err_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_err_wd = reg_wdata[1];
assign intr_enable_done_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_done_wd = reg_wdata[0];
assign intr_enable_err_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_err_wd = reg_wdata[1];
assign intr_test_done_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_done_wd = reg_wdata[0];
assign intr_test_err_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_err_wd = reg_wdata[1];
assign alert_test_imem_uncorrectable_we = addr_hit[3] & reg_we & ~wr_err;
assign alert_test_imem_uncorrectable_wd = reg_wdata[0];
assign alert_test_dmem_uncorrectable_we = addr_hit[3] & reg_we & ~wr_err;
assign alert_test_dmem_uncorrectable_wd = reg_wdata[1];
assign alert_test_reg_uncorrectable_we = addr_hit[3] & reg_we & ~wr_err;
assign alert_test_reg_uncorrectable_wd = reg_wdata[2];
assign cmd_start_we = addr_hit[4] & reg_we & ~wr_err;
assign cmd_start_wd = reg_wdata[0];
assign cmd_dummy_we = addr_hit[4] & reg_we & ~wr_err;
assign cmd_dummy_wd = reg_wdata[1];
assign status_busy_re = addr_hit[5] && reg_re;
assign status_dummy_re = addr_hit[5] && reg_re;
assign start_addr_we = addr_hit[7] & reg_we & ~wr_err;
assign start_addr_wd = reg_wdata[31:0];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_done_qs;
reg_rdata_next[1] = intr_state_err_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_done_qs;
reg_rdata_next[1] = intr_enable_err_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
end
addr_hit[4]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[5]: begin
reg_rdata_next[0] = status_busy_qs;
reg_rdata_next[1] = status_dummy_qs;
end
addr_hit[6]: begin
reg_rdata_next[31:0] = err_code_qs;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = '0;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0)
endmodule