| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| #include "sw/device/lib/base/memory.h" |
| #include "sw/device/lib/base/mmio.h" |
| #include "sw/device/lib/dif/dif_aes.h" |
| #include "sw/device/lib/runtime/log.h" |
| #include "sw/device/lib/testing/check.h" |
| #include "sw/device/lib/testing/entropy_testutils.h" |
| #include "sw/device/lib/testing/test_framework/test_main.h" |
| |
| #include "hw/top_earlgrey/sw/autogen/top_earlgrey.h" |
| |
| // The following plaintext, key and ciphertext are extracted from Appendix C of |
| // the Advanced Encryption Standard (AES) FIPS Publication 197 available at |
| // https://www.nist.gov/publications/advanced-encryption-standard-aes |
| |
| #define KEY_LENGTH_IN_BYTES 32 |
| #define TEXT_LENGTH_IN_BYTES 16 |
| #define TEXT_LENGTH_IN_WORDS (TEXT_LENGTH_IN_BYTES / 4) |
| |
| static const uint8_t kPlainText[TEXT_LENGTH_IN_BYTES] = { |
| 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, |
| 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff, |
| }; |
| |
| static const uint8_t kKey[KEY_LENGTH_IN_BYTES] = { |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, |
| 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, |
| 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
| }; |
| |
| static const uint8_t kCipherTextGold[TEXT_LENGTH_IN_BYTES] = { |
| 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf, |
| 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89, |
| }; |
| |
| // The mask share, used to mask kKey. Note that the masking should not be done |
| // manually. Software is expected to get the key in two shares right from the |
| // beginning. |
| static const uint8_t kKeyShare1[KEY_LENGTH_IN_BYTES] = { |
| 0x0f, 0x1f, 0x2f, 0x3F, 0x4f, 0x5f, 0x6f, 0x7f, 0x8f, 0x9f, 0xaf, |
| 0xbf, 0xcf, 0xdf, 0xef, 0xff, 0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, |
| 0x6a, 0x7a, 0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa, |
| }; |
| |
| const test_config_t kTestConfig; |
| |
| static bool aes_input_ready(const dif_aes_t *aes) { |
| bool status; |
| CHECK(dif_aes_get_status(aes, kDifAesStatusInputReady, &status) == kDifAesOk); |
| |
| return status; |
| } |
| |
| static bool aes_output_valid(const dif_aes_t *aes) { |
| bool status; |
| CHECK(dif_aes_get_status(aes, kDifAesStatusOutputValid, &status) == |
| kDifAesOk); |
| |
| return status; |
| } |
| |
| bool test_main(void) { |
| dif_aes_t aes; |
| |
| LOG_INFO("Running AES test"); |
| |
| // First of all, we need to get the entropy complex up and running. |
| entropy_testutils_boot_mode_init(); |
| |
| // Initialise AES. |
| dif_aes_params_t params = { |
| .base_addr = mmio_region_from_addr(TOP_EARLGREY_AES_BASE_ADDR), |
| }; |
| CHECK(dif_aes_init(params, &aes) == kDifAesOk); |
| CHECK(dif_aes_reset(&aes) == kDifAesOk); |
| |
| // Mask the key. Note that this should not be done manually. Software is |
| // expected to get the key in two shares right from the beginning. |
| uint8_t key_share0[KEY_LENGTH_IN_BYTES]; |
| for (int i = 0; i < KEY_LENGTH_IN_BYTES; ++i) { |
| key_share0[i] = kKey[i] ^ kKeyShare1[i]; |
| } |
| |
| // "Convert" key share byte arrays to `dif_aes_key_share_t`. |
| dif_aes_key_share_t key; |
| memcpy(&key.share0[0], &key_share0[0], KEY_LENGTH_IN_BYTES); |
| memcpy(&key.share1[0], &kKeyShare1[0], KEY_LENGTH_IN_BYTES); |
| |
| // Setup ECB encryption transaction. |
| dif_aes_transaction_t transaction = { |
| .key_len = kDifAesKey256, |
| .mode = kDifAesModeEncrypt, |
| .operation = kDifAesOperationAuto, |
| }; |
| CHECK(dif_aes_start_ecb(&aes, &transaction, key) == kDifAesOk); |
| |
| // "Convert" plain data byte arrays to `dif_aes_data_t`. |
| dif_aes_data_t in_data_plain; |
| memcpy(&in_data_plain.data[0], &kPlainText[0], TEXT_LENGTH_IN_BYTES); |
| |
| // Load the plain text to trigger the encryption operation. |
| while (!aes_input_ready(&aes)) { |
| } |
| CHECK(dif_aes_load_data(&aes, in_data_plain) == kDifAesOk); |
| |
| // Read out the produced cipher text. |
| dif_aes_data_t out_data_cipher; |
| while (!aes_output_valid(&aes)) { |
| } |
| CHECK(dif_aes_read_output(&aes, &out_data_cipher) == kDifAesOk); |
| |
| // Finish the ECB encryption transaction. |
| CHECK(dif_aes_end(&aes) == kDifAesOk); |
| |
| // Check the produced cipher text against the reference. |
| uint32_t cipher_text_gold_words[TEXT_LENGTH_IN_WORDS]; |
| memcpy(&cipher_text_gold_words[0], &kCipherTextGold[0], TEXT_LENGTH_IN_BYTES); |
| for (int i = 0; i < TEXT_LENGTH_IN_WORDS; ++i) { |
| CHECK(cipher_text_gold_words[i] == out_data_cipher.data[i], |
| "Encrypted cipher text mismatched: exp = %x, actual = %x", |
| cipher_text_gold_words[i], out_data_cipher.data[i]); |
| } |
| |
| // Setup ECB decryption transaction. |
| transaction.mode = kDifAesModeDecrypt; |
| CHECK(dif_aes_start_ecb(&aes, &transaction, key) == kDifAesOk); |
| |
| // Load the previously produced cipher text to start the decryption operation. |
| while (!aes_input_ready(&aes)) { |
| } |
| CHECK(dif_aes_load_data(&aes, out_data_cipher) == kDifAesOk); |
| |
| // Read out the produced plain text. |
| |
| dif_aes_data_t out_data_plain; |
| while (!aes_output_valid(&aes)) { |
| } |
| CHECK(dif_aes_read_output(&aes, &out_data_plain) == kDifAesOk); |
| |
| // Finish the ECB encryption transaction. |
| CHECK(dif_aes_end(&aes) == kDifAesOk); |
| |
| // Check the produced plain text against the reference. |
| uint32_t plain_text_gold_words[TEXT_LENGTH_IN_WORDS]; |
| memcpy(&plain_text_gold_words[0], &kPlainText[0], TEXT_LENGTH_IN_BYTES); |
| for (int i = 0; i < TEXT_LENGTH_IN_WORDS; ++i) { |
| CHECK(plain_text_gold_words[i] == out_data_plain.data[i], |
| "Decrypted text mismatched: exp = %x, actual = %x", |
| plain_text_gold_words[i], out_data_plain.data[i]); |
| } |
| |
| return true; |
| } |