blob: 7a63697c614e81d3f8fd5ae82e0e005c1c4c2f88 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module pwrmgr_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output pwrmgr_reg_pkg::pwrmgr_reg2hw_t reg2hw, // Write
input pwrmgr_reg_pkg::pwrmgr_hw2reg_t hw2reg, // Read
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import pwrmgr_reg_pkg::* ;
localparam int AW = 6;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
assign tl_reg_h2d = tl_i;
assign tl_o = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err ;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_qs;
logic intr_state_wd;
logic intr_state_we;
logic intr_enable_qs;
logic intr_enable_wd;
logic intr_enable_we;
logic intr_test_wd;
logic intr_test_we;
logic cfg_cdc_sync_wd;
logic cfg_cdc_sync_we;
logic ctrl_cfg_regwen_qs;
logic ctrl_cfg_regwen_wd;
logic ctrl_cfg_regwen_we;
logic ctrl_cfg_regwen_re;
logic control_low_power_hint_qs;
logic control_low_power_hint_wd;
logic control_low_power_hint_we;
logic control_core_clk_en_qs;
logic control_core_clk_en_wd;
logic control_core_clk_en_we;
logic control_io_clk_en_qs;
logic control_io_clk_en_wd;
logic control_io_clk_en_we;
logic control_main_pdb_qs;
logic control_main_pdb_wd;
logic control_main_pdb_we;
logic wakeup_en_regwen_qs;
logic wakeup_en_regwen_wd;
logic wakeup_en_regwen_we;
logic [15:0] wakeup_en_qs;
logic [15:0] wakeup_en_wd;
logic wakeup_en_we;
logic [15:0] wake_status_qs;
logic reset_en_regwen_qs;
logic reset_en_regwen_wd;
logic reset_en_regwen_we;
logic [1:0] reset_en_qs;
logic [1:0] reset_en_wd;
logic reset_en_we;
logic [1:0] reset_status_qs;
logic wake_info_capture_dis_qs;
logic wake_info_capture_dis_wd;
logic wake_info_capture_dis_we;
logic [15:0] wake_info_reasons_qs;
logic [15:0] wake_info_reasons_wd;
logic wake_info_reasons_we;
logic wake_info_reasons_re;
logic wake_info_fall_through_qs;
logic wake_info_fall_through_wd;
logic wake_info_fall_through_we;
logic wake_info_fall_through_re;
logic wake_info_abort_qs;
logic wake_info_abort_wd;
logic wake_info_abort_we;
logic wake_info_abort_re;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q ),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q ),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
prim_subreg_ext #(
.DW (1)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.qe),
.q (reg2hw.intr_test.q ),
.qs ()
);
// R[cfg_cdc_sync]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("WO"),
.RESVAL (1'h0)
) u_cfg_cdc_sync (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (cfg_cdc_sync_we),
.wd (cfg_cdc_sync_wd),
// from internal hardware
.de (hw2reg.cfg_cdc_sync.de),
.d (hw2reg.cfg_cdc_sync.d ),
// to internal hardware
.qe (reg2hw.cfg_cdc_sync.qe),
.q (reg2hw.cfg_cdc_sync.q ),
.qs ()
);
// R[ctrl_cfg_regwen]: V(True)
prim_subreg_ext #(
.DW (1)
) u_ctrl_cfg_regwen (
.re (ctrl_cfg_regwen_re),
.we (ctrl_cfg_regwen_we),
.wd (ctrl_cfg_regwen_wd),
.d (hw2reg.ctrl_cfg_regwen.d),
.qre (),
.qe (),
.q (),
.qs (ctrl_cfg_regwen_qs)
);
// R[control]: V(False)
// F[low_power_hint]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_control_low_power_hint (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (control_low_power_hint_we & ctrl_cfg_regwen_qs),
.wd (control_low_power_hint_wd),
// from internal hardware
.de (hw2reg.control.low_power_hint.de),
.d (hw2reg.control.low_power_hint.d ),
// to internal hardware
.qe (),
.q (reg2hw.control.low_power_hint.q ),
// to register interface (read)
.qs (control_low_power_hint_qs)
);
// F[core_clk_en]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_control_core_clk_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (control_core_clk_en_we & ctrl_cfg_regwen_qs),
.wd (control_core_clk_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.control.core_clk_en.q ),
// to register interface (read)
.qs (control_core_clk_en_qs)
);
// F[io_clk_en]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_control_io_clk_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (control_io_clk_en_we & ctrl_cfg_regwen_qs),
.wd (control_io_clk_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.control.io_clk_en.q ),
// to register interface (read)
.qs (control_io_clk_en_qs)
);
// F[main_pdb]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h1)
) u_control_main_pdb (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (control_main_pdb_we & ctrl_cfg_regwen_qs),
.wd (control_main_pdb_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.control.main_pdb.q ),
// to register interface (read)
.qs (control_main_pdb_qs)
);
// R[wakeup_en_regwen]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_wakeup_en_regwen (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (wakeup_en_regwen_we),
.wd (wakeup_en_regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (wakeup_en_regwen_qs)
);
// R[wakeup_en]: V(False)
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_wakeup_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (wakeup_en_we & wakeup_en_regwen_qs),
.wd (wakeup_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.wakeup_en.q ),
// to register interface (read)
.qs (wakeup_en_qs)
);
// R[wake_status]: V(False)
// constant-only read
assign wake_status_qs = 16'h0;
// R[reset_en_regwen]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_reset_en_regwen (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (reset_en_regwen_we),
.wd (reset_en_regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (reset_en_regwen_qs)
);
// R[reset_en]: V(False)
prim_subreg #(
.DW (2),
.SWACCESS("RW"),
.RESVAL (2'h0)
) u_reset_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (reset_en_we & reset_en_regwen_qs),
.wd (reset_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.reset_en.q ),
// to register interface (read)
.qs (reset_en_qs)
);
// R[reset_status]: V(False)
// constant-only read
assign reset_status_qs = 2'h0;
// R[wake_info_capture_dis]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_wake_info_capture_dis (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (wake_info_capture_dis_we),
.wd (wake_info_capture_dis_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.wake_info_capture_dis.q ),
// to register interface (read)
.qs (wake_info_capture_dis_qs)
);
// R[wake_info]: V(True)
// F[reasons]: 15:0
prim_subreg_ext #(
.DW (16)
) u_wake_info_reasons (
.re (wake_info_reasons_re),
.we (wake_info_reasons_we),
.wd (wake_info_reasons_wd),
.d (hw2reg.wake_info.reasons.d),
.qre (),
.qe (reg2hw.wake_info.reasons.qe),
.q (reg2hw.wake_info.reasons.q ),
.qs (wake_info_reasons_qs)
);
// F[fall_through]: 16:16
prim_subreg_ext #(
.DW (1)
) u_wake_info_fall_through (
.re (wake_info_fall_through_re),
.we (wake_info_fall_through_we),
.wd (wake_info_fall_through_wd),
.d (hw2reg.wake_info.fall_through.d),
.qre (),
.qe (reg2hw.wake_info.fall_through.qe),
.q (reg2hw.wake_info.fall_through.q ),
.qs (wake_info_fall_through_qs)
);
// F[abort]: 17:17
prim_subreg_ext #(
.DW (1)
) u_wake_info_abort (
.re (wake_info_abort_re),
.we (wake_info_abort_we),
.wd (wake_info_abort_wd),
.d (hw2reg.wake_info.abort.d),
.qre (),
.qe (reg2hw.wake_info.abort.qe),
.q (reg2hw.wake_info.abort.q ),
.qs (wake_info_abort_qs)
);
logic [13:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == PWRMGR_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == PWRMGR_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == PWRMGR_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == PWRMGR_CFG_CDC_SYNC_OFFSET);
addr_hit[ 4] = (reg_addr == PWRMGR_CTRL_CFG_REGWEN_OFFSET);
addr_hit[ 5] = (reg_addr == PWRMGR_CONTROL_OFFSET);
addr_hit[ 6] = (reg_addr == PWRMGR_WAKEUP_EN_REGWEN_OFFSET);
addr_hit[ 7] = (reg_addr == PWRMGR_WAKEUP_EN_OFFSET);
addr_hit[ 8] = (reg_addr == PWRMGR_WAKE_STATUS_OFFSET);
addr_hit[ 9] = (reg_addr == PWRMGR_RESET_EN_REGWEN_OFFSET);
addr_hit[10] = (reg_addr == PWRMGR_RESET_EN_OFFSET);
addr_hit[11] = (reg_addr == PWRMGR_RESET_STATUS_OFFSET);
addr_hit[12] = (reg_addr == PWRMGR_WAKE_INFO_CAPTURE_DIS_OFFSET);
addr_hit[13] = (reg_addr == PWRMGR_WAKE_INFO_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (PWRMGR_PERMIT[ 0] != (PWRMGR_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (PWRMGR_PERMIT[ 1] != (PWRMGR_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (PWRMGR_PERMIT[ 2] != (PWRMGR_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (PWRMGR_PERMIT[ 3] != (PWRMGR_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (PWRMGR_PERMIT[ 4] != (PWRMGR_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (PWRMGR_PERMIT[ 5] != (PWRMGR_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (PWRMGR_PERMIT[ 6] != (PWRMGR_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (PWRMGR_PERMIT[ 7] != (PWRMGR_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (PWRMGR_PERMIT[ 8] != (PWRMGR_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (PWRMGR_PERMIT[ 9] != (PWRMGR_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (PWRMGR_PERMIT[10] != (PWRMGR_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[11] && reg_we && (PWRMGR_PERMIT[11] != (PWRMGR_PERMIT[11] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[12] && reg_we && (PWRMGR_PERMIT[12] != (PWRMGR_PERMIT[12] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[13] && reg_we && (PWRMGR_PERMIT[13] != (PWRMGR_PERMIT[13] & reg_be))) wr_err = 1'b1 ;
end
assign intr_state_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_wd = reg_wdata[0];
assign intr_enable_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_wd = reg_wdata[0];
assign intr_test_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_wd = reg_wdata[0];
assign cfg_cdc_sync_we = addr_hit[3] & reg_we & ~wr_err;
assign cfg_cdc_sync_wd = reg_wdata[0];
assign ctrl_cfg_regwen_we = addr_hit[4] & reg_we & ~wr_err;
assign ctrl_cfg_regwen_wd = reg_wdata[0];
assign ctrl_cfg_regwen_re = addr_hit[4] && reg_re;
assign control_low_power_hint_we = addr_hit[5] & reg_we & ~wr_err;
assign control_low_power_hint_wd = reg_wdata[0];
assign control_core_clk_en_we = addr_hit[5] & reg_we & ~wr_err;
assign control_core_clk_en_wd = reg_wdata[4];
assign control_io_clk_en_we = addr_hit[5] & reg_we & ~wr_err;
assign control_io_clk_en_wd = reg_wdata[5];
assign control_main_pdb_we = addr_hit[5] & reg_we & ~wr_err;
assign control_main_pdb_wd = reg_wdata[6];
assign wakeup_en_regwen_we = addr_hit[6] & reg_we & ~wr_err;
assign wakeup_en_regwen_wd = reg_wdata[0];
assign wakeup_en_we = addr_hit[7] & reg_we & ~wr_err;
assign wakeup_en_wd = reg_wdata[15:0];
assign reset_en_regwen_we = addr_hit[9] & reg_we & ~wr_err;
assign reset_en_regwen_wd = reg_wdata[0];
assign reset_en_we = addr_hit[10] & reg_we & ~wr_err;
assign reset_en_wd = reg_wdata[1:0];
assign wake_info_capture_dis_we = addr_hit[12] & reg_we & ~wr_err;
assign wake_info_capture_dis_wd = reg_wdata[0];
assign wake_info_reasons_we = addr_hit[13] & reg_we & ~wr_err;
assign wake_info_reasons_wd = reg_wdata[15:0];
assign wake_info_reasons_re = addr_hit[13] && reg_re;
assign wake_info_fall_through_we = addr_hit[13] & reg_we & ~wr_err;
assign wake_info_fall_through_wd = reg_wdata[16];
assign wake_info_fall_through_re = addr_hit[13] && reg_re;
assign wake_info_abort_we = addr_hit[13] & reg_we & ~wr_err;
assign wake_info_abort_wd = reg_wdata[17];
assign wake_info_abort_re = addr_hit[13] && reg_re;
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
end
addr_hit[4]: begin
reg_rdata_next[0] = ctrl_cfg_regwen_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = control_low_power_hint_qs;
reg_rdata_next[4] = control_core_clk_en_qs;
reg_rdata_next[5] = control_io_clk_en_qs;
reg_rdata_next[6] = control_main_pdb_qs;
end
addr_hit[6]: begin
reg_rdata_next[0] = wakeup_en_regwen_qs;
end
addr_hit[7]: begin
reg_rdata_next[15:0] = wakeup_en_qs;
end
addr_hit[8]: begin
reg_rdata_next[15:0] = wake_status_qs;
end
addr_hit[9]: begin
reg_rdata_next[0] = reset_en_regwen_qs;
end
addr_hit[10]: begin
reg_rdata_next[1:0] = reset_en_qs;
end
addr_hit[11]: begin
reg_rdata_next[1:0] = reset_status_qs;
end
addr_hit[12]: begin
reg_rdata_next[0] = wake_info_capture_dis_qs;
end
addr_hit[13]: begin
reg_rdata_next[15:0] = wake_info_reasons_qs;
reg_rdata_next[16] = wake_info_fall_through_qs;
reg_rdata_next[17] = wake_info_abort_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0)
endmodule