blob: 5c9ca270d66f4d8ef88d06c9a48798021c703aa8 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// AES Masked Canright SBox with Mask Re-Use
//
// For details, see the following paper:
// Canright, "A very compact 'perfectly masked' S-box for AES (corrected)"
// available at https://eprint.iacr.org/2009/011.pdf
//
// Note: This module implements the masked inversion algorithm with re-using masks.
// For details, see Section 2.3 of the paper. Re-using masks may make the implementation more
// vulnerable to higher-order differential side-channel analysis, but it remains secure against
// first-order attacks. This implementation is commonly referred to as THE Canright Masked SBox.
///////////////////////////////////////////////////////////////////////////////////////////////////
// IMPORTANT NOTE: //
// DO NOT USE THIS FOR SYNTHESIS BLINDLY! //
// //
// This is a high-level implementation targeting primarily RTL simulation. Synthesis tools might //
// heavily optimize the design. The result is likely insecure. Use with care. //
///////////////////////////////////////////////////////////////////////////////////////////////////
module aes_sbox_canright_masked (
input aes_pkg::ciph_op_e op_i,
input logic [7:0] data_i, // masked, the actual input data is data_i ^ in_mask_i
input logic [7:0] in_mask_i, // input mask, independent from actual input data
input logic [7:0] out_mask_i, // output mask, independent from input mask
output logic [7:0] data_o // masked, the actual output data is data_o ^ out_mask_i
);
import aes_pkg::*;
import aes_sbox_canright_pkg::*;
///////////////
// Functions //
///////////////
// Masked inverse in GF(2^4), using normal basis [z^4, z]
// (see Formulas 6, 13, 14, 15, 21, 22, 23, 24 in the paper)
function automatic logic [3:0] aes_masked_inverse_gf2p4(logic [3:0] b,
logic [3:0] q,
logic [1:0] r,
logic [3:0] m1);
logic [3:0] b_inv;
logic [1:0] b1, b0, q1, q0, c, c_inv, c2_inv, r_sq, m11, m10, b1_inv, b0_inv;
logic [1:0] mul_b0_q1, mul_b1_q0, mul_q0_q1;
b1 = b[3:2];
b0 = b[1:0];
q1 = q[3:2];
q0 = q[1:0];
m11 = m1[3:2];
m10 = m1[1:0];
// Get re-usable intermediate results.
mul_b0_q1 = aes_mul_gf2p2(b0, q1);
mul_b1_q0 = aes_mul_gf2p2(b1, q0);
mul_q0_q1 = aes_mul_gf2p2(q0, q1);
// Formula 13
// IMPORTANT: The following ops must be executed in order (left to right):
c = r ^ aes_scale_omega2_gf2p2(aes_square_gf2p2(b1 ^ b0))
^ aes_scale_omega2_gf2p2(aes_square_gf2p2(q1 ^ q0))
^ aes_mul_gf2p2(b1, b0)
^ aes_mul_gf2p2(b1, q0) ^ mul_b0_q1 ^ mul_q0_q1;
//
// Formulas 14 and 15
c_inv = aes_square_gf2p2(c);
r_sq = aes_square_gf2p2(r);
// Re-masking c_inv
// Formulas 21 and 23
// IMPORTANT: First combine the masks (ops in parens) then apply to c_inv:
c_inv = c_inv ^ (q1 ^ r_sq);
c2_inv = c_inv ^ (q0 ^ q1);
//
// Formulas 22 and 24
// IMPORTANT: The following ops must be executed in order (left to right):
b1_inv = m11 ^ aes_mul_gf2p2(b0, c_inv)
^ mul_b0_q1 ^ aes_mul_gf2p2(q0, c_inv) ^ mul_q0_q1;
b0_inv = m10 ^ aes_mul_gf2p2(b1, c2_inv)
^ mul_b1_q0 ^ aes_mul_gf2p2(q1, c2_inv) ^ mul_q0_q1;
//
// Note: b_inv is masked by m1, b was masked by q.
b_inv = {b1_inv, b0_inv};
return b_inv;
endfunction
// Masked inverse in GF(2^8), using normal basis [y^16, y]
// (see Formulas 3, 12, 25, 26 and 27 in the paper)
function automatic logic [7:0] aes_masked_inverse_gf2p8(logic [7:0] a,
logic [7:0] m,
logic [7:0] n);
logic [7:0] a_inv;
logic [3:0] a1, a0, m1, m0, b, b_inv, b2_inv, q, s1, s0, a1_inv, a0_inv;
logic [3:0] mul_a0_m1, mul_a1_m0, mul_m0_m1;
logic [1:0] r;
a1 = a[7:4];
a0 = a[3:0];
m1 = m[7:4];
m0 = m[3:0];
// Get re-usable intermediate results.
mul_a0_m1 = aes_mul_gf2p4(a0, m1);
mul_a1_m0 = aes_mul_gf2p4(a1, m0);
mul_m0_m1 = aes_mul_gf2p4(m0, m1);
// q must be independent of m.
q = n[7:4];
// Formula 12
// IMPORTANT: The following ops must be executed in order (left to right):
b = q ^ aes_square_scale_gf2p4_gf2p2(a1 ^ a0)
^ aes_square_scale_gf2p4_gf2p2(m1 ^ m0)
^ aes_mul_gf2p4(a1, a0)
^ mul_a1_m0 ^ mul_a0_m1 ^ mul_m0_m1;
//
// r must be independent of q.
r = m1[3:2];
// b is masked by q, b_inv is masked by m1.
b_inv = aes_masked_inverse_gf2p4(b, q, r, m1);
// Formula 26
// IMPORTANT: First combine the masks (ops in parens) then apply to b_inv:
b2_inv = b_inv ^ (m1 ^ m0);
//
// s is the specified output mask n.
s1 = n[7:4];
s0 = n[3:0];
// Formulas 25 and 27
// IMPORTANT: The following ops must be executed in order (left to right):
a1_inv = s1 ^ aes_mul_gf2p4(a0, b_inv)
^ mul_a0_m1 ^ aes_mul_gf2p4(m0, b_inv) ^ mul_m0_m1;
a0_inv = s0 ^ aes_mul_gf2p4(a1, b2_inv)
^ mul_a1_m0 ^ aes_mul_gf2p4(m1, b2_inv) ^ mul_m0_m1;
//
// Note: a_inv is now masked by s = n, a was masked by m.
a_inv = {a1_inv, a0_inv};
return a_inv;
endfunction
//////////////////////////
// Masked Canright SBox //
//////////////////////////
logic [7:0] data_basis_x, data_inverse;
logic [7:0] in_mask_basis_x;
logic [7:0] out_mask_basis_x;
// Convert data to normal basis X.
assign data_basis_x = (op_i == CIPH_FWD) ? aes_mvm(data_i, A2X) :
aes_mvm(data_i ^ 8'h63, S2X);
// Convert masks to normal basis X.
// The addition of constant 8'h63 following the affine transformation is skipped.
assign in_mask_basis_x = (op_i == CIPH_FWD) ? aes_mvm(in_mask_i, A2X) :
aes_mvm(in_mask_i, S2X);
// The output mask is converted in the opposite direction.
assign out_mask_basis_x = (op_i == CIPH_INV) ? aes_mvm(out_mask_i, A2X) :
aes_mvm(out_mask_i, S2X);
// Do the inversion in normal basis X.
assign data_inverse = aes_masked_inverse_gf2p8(data_basis_x, in_mask_basis_x, out_mask_basis_x);
// Convert to basis S or A.
assign data_o = (op_i == CIPH_FWD) ? (aes_mvm(data_inverse, X2S) ^ 8'h63) :
(aes_mvm(data_inverse, X2A));
endmodule