blob: b9d9d34177f82194906e4a428b476edcabcce66e [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
<%
from reggen import gen_rtl
from reggen.access import HwAccess, SwRdAccess, SwWrAccess
from reggen.lib import get_basename
from reggen.register import Register
from reggen.multi_register import MultiRegister
from reggen.bits import Bits
num_wins = len(rb.windows)
num_wins_width = ((num_wins+1).bit_length()) - 1
num_reg_dsp = 1 if rb.all_regs else 0
num_dsp = num_wins + num_reg_dsp
regs_flat = rb.flat_regs
max_regs_char = len("{}".format(len(regs_flat) - 1))
addr_width = rb.get_addr_width()
lblock = block.name.lower()
ublock = lblock.upper()
u_mod_base = mod_base.upper()
reg2hw_t = gen_rtl.get_iface_tx_type(block, if_name, False)
hw2reg_t = gen_rtl.get_iface_tx_type(block, if_name, True)
win_array_decl = f' [{num_wins}]' if num_wins > 1 else ''
# Calculate whether we're going to need an AW parameter. We use it if there
# are any registers (obviously). We also use it if there are any windows that
# don't start at zero and end at 1 << addr_width (see the "addr_checks"
# calculation below for where that comes from).
needs_aw = (bool(regs_flat) or
num_wins > 1 or
rb.windows and (
rb.windows[0].offset != 0 or
rb.windows[0].size_in_bytes != (1 << addr_width)))
common_data_intg_gen = 0 if rb.has_data_intg_passthru else 1
adapt_data_intg_gen = 1 if rb.has_data_intg_passthru else 0
assert common_data_intg_gen != adapt_data_intg_gen
# declare a fully asynchronous interface
reg_clk_expr = "clk_i"
reg_rst_expr = "rst_ni"
tl_h2d_expr = "tl_i"
tl_d2h_expr = "tl_o"
if rb.async_if:
tl_h2d_expr = "tl_async_h2d"
tl_d2h_expr = "tl_async_d2h"
for clock in rb.clocks.values():
reg_clk_expr = clock.clock
reg_rst_expr = clock.reset
%>
`include "prim_assert.sv"
module ${mod_name} (
input clk_i,
input rst_ni,
% for clock in rb.clocks.values():
input ${clock.clock},
input ${clock.reset},
% endfor
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
% if num_wins != 0:
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o${win_array_decl},
input tlul_pkg::tl_d2h_t tl_win_i${win_array_decl},
% endif
// To HW
% if rb.get_n_bits(["q","qe","re"]):
output ${lblock}_reg_pkg::${reg2hw_t} reg2hw, // Write
% endif
% if rb.get_n_bits(["d","de"]):
input ${lblock}_reg_pkg::${hw2reg_t} hw2reg, // Read
% endif
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import ${lblock}_reg_pkg::* ;
% if needs_aw:
localparam int AW = ${addr_width};
% endif
% if rb.all_regs:
localparam int DW = ${block.regwidth};
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
% endif
% if rb.async_if:
tlul_pkg::tl_h2d_t tl_async_h2d;
tlul_pkg::tl_d2h_t tl_async_d2h;
tlul_fifo_async #(
.ReqDepth(2),
.RspDepth(2)
) u_if_sync (
.clk_h_i(clk_i),
.rst_h_ni(rst_ni),
.clk_d_i(${reg_clk_expr}),
.rst_d_ni(${reg_rst_expr}),
.tl_h_i(tl_i),
.tl_h_o(tl_o),
.tl_d_o(${tl_h2d_expr}),
.tl_d_i(${tl_d2h_expr})
);
% endif
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(${tl_h2d_expr}),
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge ${reg_clk_expr} or negedge ${reg_rst_expr}) begin
if (!${reg_rst_expr}) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(${common_data_intg_gen})
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(${tl_d2h_expr})
);
% if num_dsp == 1:
## Either no windows (and just registers) or no registers and only
## one window.
% if num_wins == 0:
assign tl_reg_h2d = ${tl_h2d_expr};
assign tl_o_pre = tl_reg_d2h;
% else:
assign tl_win_o = ${tl_h2d_expr};
assign tl_o_pre = tl_win_i;
% endif
% else:
tlul_pkg::tl_h2d_t tl_socket_h2d [${num_dsp}];
tlul_pkg::tl_d2h_t tl_socket_d2h [${num_dsp}];
logic [${num_wins_width}:0] reg_steer;
// socket_1n connection
% if rb.all_regs:
assign tl_reg_h2d = tl_socket_h2d[${num_wins}];
assign tl_socket_d2h[${num_wins}] = tl_reg_d2h;
% endif
% for i,t in enumerate(rb.windows):
<%
win_suff = f'[{i}]' if num_wins > 1 else ''
%>\
assign tl_win_o${win_suff} = tl_socket_h2d[${i}];
% if common_data_intg_gen == 0 and rb.windows[i].data_intg_passthru == False:
## If there are multiple windows, and not every window has data integrity
## passthrough, we must generate data integrity for it here.
tlul_rsp_intg_gen #(
.EnableRspIntgGen(0),
.EnableDataIntgGen(1)
) u_win${i}_data_intg_gen (
.tl_i(tl_win_i${win_suff}),
.tl_o(tl_socket_d2h[${i}])
);
% else:
assign tl_socket_d2h[${i}] = tl_win_i${win_suff};
% endif
% endfor
// Create Socket_1n
tlul_socket_1n #(
.N (${num_dsp}),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({${num_dsp}{1'b1}}),
.DRspPass ({${num_dsp}{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({${num_dsp}{4'h0}}),
.DRspDepth ({${num_dsp}{4'h0}})
) u_socket (
.clk_i (${reg_clk_expr}),
.rst_ni (${reg_rst_expr}),
.tl_h_i (${tl_h2d_expr}),
.tl_h_o (tl_o_pre),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer = ${num_dsp-1}; // Default set to register
// TODO: Can below codes be unique case () inside ?
% for i,w in enumerate(rb.windows):
<%
base_addr = w.offset
limit_addr = w.offset + w.size_in_bytes
hi_check = f'{tl_h2d_expr}.a_address[AW-1:0] < {limit_addr}'
addr_checks = []
if base_addr > 0:
addr_checks.append(f'{tl_h2d_expr}.a_address[AW-1:0] >= {base_addr}')
if limit_addr < 2**addr_width:
addr_checks.append(f'{tl_h2d_expr}.a_address[AW-1:0] < {limit_addr}')
addr_test = ' && '.join(addr_checks)
%>\
% if addr_test:
if (${addr_test}) begin
% endif
reg_steer = ${i};
% if addr_test:
end
% endif
% endfor
if (intg_err) begin
reg_steer = ${num_dsp-1};
end
end
% endif
% if rb.all_regs:
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(${adapt_data_intg_gen})
) u_reg_if (
.clk_i (${reg_clk_expr}),
.rst_ni (${reg_rst_expr}),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
% if not rb.async_if:
// cdc oversampling signals
% for clock in rb.clocks.values():
<%
clk_name = clock.clock_base_name
tgl_expr = clk_name + "_tgl"
cname = clock.clock
rname = clock.reset
%>\
logic sync_${clk_name}_update;
prim_pulse_sync u_${tgl_expr} (
.clk_src_i(${cname}),
.rst_src_ni(${rname}),
.src_pulse_i(1'b1),
.clk_dst_i(${reg_clk_expr}),
.rst_dst_ni(${reg_rst_expr}),
.dst_pulse_o(sync_${clk_name}_update)
);
% endfor
% endif
% if block.expose_reg_if:
assign reg2hw.reg_if.reg_we = reg_we;
assign reg2hw.reg_if.reg_re = reg_re;
assign reg2hw.reg_if.reg_addr = reg_addr;
assign reg2hw.reg_if.reg_wdata = reg_wdata;
assign reg2hw.reg_if.reg_be = reg_be;
% endif
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
% for r in regs_flat:
${reg_sig_decl(r)}\
% for f in r.fields:
<%
fld_suff = '_' + f.name.lower() if len(r.fields) > 1 else ''
sig_name = r.name.lower() + fld_suff
%>\
${field_sig_decl(f, sig_name, r.hwext, r.shadowed, r.async_clk)}\
% endfor
% endfor
// Register instances
% for r in rb.all_regs:
######################## multiregister ###########################
% if isinstance(r, MultiRegister):
<%
k = 0
%>
% for sr in r.regs:
// Subregister ${k} of Multireg ${r.reg.name.lower()}
// R[${sr.name.lower()}]: V(${str(sr.hwext)})
% if len(sr.fields) == 1:
<%
f = sr.fields[0]
finst_name = sr.name.lower()
fsig_name = r.reg.name.lower() + "[%d]" % k
k = k + 1
%>
${finst_gen(sr, f, finst_name, fsig_name)}
% else:
% for f in sr.fields:
<%
finst_name = sr.name.lower() + "_" + f.name.lower()
if r.is_homogeneous():
fsig_name = r.reg.name.lower() + "[%d]" % k
k = k + 1
else:
fsig_name = r.reg.name.lower() + "[%d]" % k + "." + get_basename(f.name.lower())
%>
// F[${f.name.lower()}]: ${f.bits.msb}:${f.bits.lsb}
${finst_gen(sr, f, finst_name, fsig_name)}
% endfor
<%
if not r.is_homogeneous():
k += 1
%>
% endif
## for: mreg_flat
% endfor
######################## register with single field ###########################
% elif len(r.fields) == 1:
// R[${r.name.lower()}]: V(${str(r.hwext)})
<%
f = r.fields[0]
finst_name = r.name.lower()
fsig_name = r.name.lower()
%>
${finst_gen(r, f, finst_name, fsig_name)}
######################## register with multiple fields ###########################
% else:
// R[${r.name.lower()}]: V(${str(r.hwext)})
% for f in r.fields:
<%
finst_name = r.name.lower() + "_" + f.name.lower()
fsig_name = r.name.lower() + "." + f.name.lower()
%>
// F[${f.name.lower()}]: ${f.bits.msb}:${f.bits.lsb}
${finst_gen(r, f, finst_name, fsig_name)}
% endfor
% endif
## for: rb.all_regs
% endfor
logic [${len(regs_flat)-1}:0] addr_hit;
always_comb begin
addr_hit = '0;
% for i,r in enumerate(regs_flat):
addr_hit[${"{}".format(i).rjust(max_regs_char)}] = (reg_addr == ${ublock}_${r.name.upper()}_OFFSET);
% endfor
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
% if regs_flat:
<%
# We want to signal wr_err if reg_be (the byte enable signal) is true for
# any bytes that aren't supported by a register. That's true if a
# addr_hit[i] and a bit is set in reg_be but not in *_PERMIT[i].
wr_err_terms = ['(addr_hit[{idx}] & (|({mod}_PERMIT[{idx}] & ~reg_be)))'
.format(idx=str(i).rjust(max_regs_char),
mod=u_mod_base)
for i in range(len(regs_flat))]
wr_err_expr = (' |\n' + (' ' * 15)).join(wr_err_terms)
%>\
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
(${wr_err_expr}));
end
% else:
assign wr_error = 1'b0;
% endif\
% for i, r in enumerate(regs_flat):
${reg_enable_gen(r, i)}\
% if len(r.fields) == 1:
${field_wd_gen(r.fields[0], r.name.lower(), r.hwext, r.shadowed, i)}\
% else:
% for f in r.fields:
${field_wd_gen(f, r.name.lower() + "_" + f.name.lower(), r.hwext, r.shadowed, i)}\
% endfor
% endif
% endfor
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
% for i, r in enumerate(regs_flat):
% if len(r.fields) == 1:
addr_hit[${i}]: begin
${rdata_gen(r.fields[0], r.name.lower())}\
end
% else:
addr_hit[${i}]: begin
% for f in r.fields:
${rdata_gen(f, r.name.lower() + "_" + f.name.lower())}\
% endfor
end
% endif
% endfor
default: begin
reg_rdata_next = '1;
end
endcase
end
// register busy
% if rb.async_if:
assign reg_busy = '0;
% else:
always_comb begin
reg_busy = '0;
unique case (1'b1)
% for i, r in enumerate(regs_flat):
% if r.async_clk and len(r.fields) == 1:
addr_hit[${i}]: begin
reg_busy = ${r.name.lower() + "_busy"};
end
% elif r.async_clk:
addr_hit[${i}]: begin
reg_busy =
% for f in r.fields:
${r.name.lower() + "_" + f.name.lower() + "_busy"}${";" if loop.last else " |"}
% endfor
end
% endif
% endfor
default: begin
reg_busy = '0;
end
endcase
end
% endif
% endif
// Unused signal tieoff
% if rb.all_regs:
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
% else:
// devmode_i is not used if there are no registers
logic unused_devmode;
assign unused_devmode = ^devmode_i;
% endif
% if rb.all_regs:
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, ${reg_clk_expr}, !${reg_rst_expr})
`ASSERT_PULSE(rePulse, reg_re, ${reg_clk_expr}, !${reg_rst_expr})
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, ${reg_clk_expr}, !${reg_rst_expr})
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), ${reg_clk_expr}, !${reg_rst_expr})
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
% endif
endmodule
<%def name="str_bits_sv(bits)">\
% if bits.msb != bits.lsb:
${bits.msb}:${bits.lsb}\
% else:
${bits.msb}\
% endif
</%def>\
<%def name="str_arr_sv(bits)">\
% if bits.msb != bits.lsb:
[${bits.msb-bits.lsb}:0] \
% endif
</%def>\
<%def name="reg_sig_decl(reg)">\
% if reg.needs_re():
logic ${reg.name.lower()}_re;
% endif
% if reg.needs_we():
logic ${reg.name.lower()}_we;
% endif
</%def>\
<%def name="field_sig_decl(field, sig_name, hwext, shadowed, async_clk)">\
% if field.swaccess.allows_read():
logic ${str_arr_sv(field.bits)}${sig_name}_qs;
% endif
% if field.swaccess.allows_write():
logic ${str_arr_sv(field.bits)}${sig_name}_wd;
% endif
% if async_clk:
logic ${str_arr_sv(Bits(0,0))}${sig_name}_busy;
% endif
</%def>\
<%def name="finst_gen(reg, field, finst_name, fsig_name)">\
<%
re_expr = f'{reg.name.lower()}_re' if field.swaccess.allows_read() else "1'b0"
if field.swaccess.allows_write():
# We usually use the REG_we signal, but use REG_re for RC fields
# (which get updated on a read, not a write)
we_suffix = 're' if field.swaccess.swrd() == SwRdAccess.RC else 'we'
we_signal = f'{reg.name.lower()}_{we_suffix}'
if reg.regwen:
we_expr = f'{we_signal} & {reg.regwen.lower()}_qs'
else:
we_expr = we_signal
wd_expr = f'{finst_name}_wd'
else:
we_expr = "1'b0"
wd_expr = "'0"
if field.hwaccess.allows_write():
de_expr = f'hw2reg.{fsig_name}.de'
d_expr = f'hw2reg.{fsig_name}.d'
else:
de_expr = "1'b0"
d_expr = "'0"
qre_expr = f'reg2hw.{fsig_name}.re' if reg.hwre or reg.shadowed else ""
if field.hwaccess.allows_read():
qe_expr = f'reg2hw.{fsig_name}.qe' if reg.hwqe else ''
q_expr = f'reg2hw.{fsig_name}.q'
else:
qe_expr = ''
q_expr = ''
qs_expr = f'{finst_name}_qs' if field.swaccess.allows_read() else ''
%>\
<%
clk_expr = reg.async_clk.clock if reg.async_clk else reg_clk_expr
rst_expr = reg.async_clk.reset if reg.async_clk else reg_rst_expr
if reg.async_clk:
update_expr = "sync_" + reg.async_clk.clock.strip("_iclk_")+ "_update"
%>\
% if reg.hwext: ## if hwext, instantiate prim_subreg_ext
<%
subreg_block = "prim_subreg_ext_async" if reg.async_clk else "prim_subreg_ext"
%>\
${subreg_block} #(
.DW (${field.bits.width()})
) u_${finst_name} (
% if reg.async_clk:
.clk_src_i (${reg_clk_expr}),
.rst_src_ni (${reg_rst_expr}),
.clk_dst_i (${clk_expr}),
.rst_dst_ni (${rst_expr}),
.src_update_i (${update_expr}),
.src_busy_o (${finst_name}_busy),
% endif
.re (${re_expr}),
.we (${we_expr}),
.wd (${wd_expr}),
.d (${d_expr}),
.qre (${qre_expr}),
.qe (${qe_expr}),
.q (${q_expr}),
.qs (${qs_expr})
);
% else:
<%
# This isn't a field in a hwext register. Instantiate prim_subreg,
# prim_subreg_shadow or constant assign.
resval_expr = f"{field.bits.width()}'h{field.resval or 0:x}"
is_const_reg = not (field.hwaccess.allows_read() or
field.hwaccess.allows_write() or
field.swaccess.allows_write() or
field.swaccess.swrd() != SwRdAccess.RD)
subreg_block = 'prim_subreg' + ('_shadow' if reg.shadowed else '')
%>\
% if is_const_reg:
// constant-only read
assign ${finst_name}_qs = ${resval_expr};
% elif reg.async_clk:
prim_subreg_async #(
.DW (${field.bits.width()}),
.SwAccess(prim_subreg_pkg::SwAccess${field.swaccess.value[1].name.upper()}),
.RESVAL (${resval_expr})
) u_${finst_name} (
.clk_src_i (${reg_clk_expr}),
.rst_src_ni (${reg_rst_expr}),
.clk_dst_i (${clk_expr}),
.rst_dst_ni (${rst_expr}),
.src_update_i (${update_expr}),
.src_we_i (${we_expr}),
.src_wd_i (${wd_expr}),
.dst_de_i (${de_expr}),
.dst_d_i (${d_expr}),
.src_busy_o (${finst_name}_busy),
.src_qs_o (${qs_expr}),
.dst_qe_o (${qe_expr}),
.q (${q_expr})
);
% else:
${subreg_block} #(
.DW (${field.bits.width()}),
.SwAccess(prim_subreg_pkg::SwAccess${field.swaccess.value[1].name.upper()}),
.RESVAL (${resval_expr})
) u_${finst_name} (
.clk_i (${reg_clk_expr}),
.rst_ni (${reg_rst_expr}),
// from register interface
% if reg.shadowed:
.re (${re_expr}),
% endif
.we (${we_expr}),
.wd (${wd_expr}),
// from internal hardware
.de (${de_expr}),
.d (${d_expr}),
// to internal hardware
.qe (${qe_expr}),
.q (${q_expr}),
// to register interface (read)
% if not reg.shadowed:
.qs (${qs_expr})
% else:
.qs (${qs_expr}),
// Shadow register error conditions
.err_update (reg2hw.${fsig_name}.err_update),
.err_storage (reg2hw.${fsig_name}.err_storage)
% endif
);
% endif ## end non-constant prim_subreg
% endif
</%def>\
<%def name="reg_enable_gen(reg, idx)">\
% if reg.needs_re():
assign ${reg.name.lower()}_re = addr_hit[${idx}] & reg_re & !reg_error;
% endif
% if reg.needs_we():
assign ${reg.name.lower()}_we = addr_hit[${idx}] & reg_we & !reg_error;
% endif
</%def>\
<%def name="field_wd_gen(field, sig_name, hwext, shadowed, idx)">\
<%
needs_wd = field.swaccess.allows_write()
space = '\n' if needs_wd or needs_re else ''
%>\
${space}\
% if needs_wd:
% if field.swaccess.swrd() == SwRdAccess.RC:
assign ${sig_name}_wd = '1;
% else:
assign ${sig_name}_wd = reg_wdata[${str_bits_sv(field.bits)}];
% endif
% endif
</%def>\
<%def name="rdata_gen(field, sig_name)">\
% if field.swaccess.allows_read():
reg_rdata_next[${str_bits_sv(field.bits)}] = ${sig_name}_qs;
% else:
reg_rdata_next[${str_bits_sv(field.bits)}] = '0;
% endif
</%def>\
<%def name="reg_enable_gen(reg, idx)">\
% if reg.needs_re():
assign ${reg.name.lower()}_re = addr_hit[${idx}] & reg_re & !reg_error;
% endif
% if reg.needs_we():
assign ${reg.name.lower()}_we = addr_hit[${idx}] & reg_we & !reg_error;
% endif
</%def>\
<%def name="reg_cdc_gen(field, sig_name, hwext, shadowed, idx)">\
<%
needs_wd = field.swaccess.allows_write()
space = '\n' if needs_wd or needs_re else ''
%>\
${space}\
% if needs_wd:
% if field.swaccess.swrd() == SwRdAccess.RC:
assign ${sig_name}_wd = '1;
% else:
assign ${sig_name}_wd = reg_wdata[${str_bits_sv(field.bits)}];
% endif
% endif
</%def>\