| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| #include "sw/device/silicon_creator/lib/shutdown.h" |
| |
| #include <assert.h> |
| |
| #include "sw/device/lib/base/bitfield.h" |
| #include "sw/device/lib/base/macros.h" |
| #include "sw/device/lib/base/memory.h" |
| #include "sw/device/lib/base/stdasm.h" |
| #include "sw/device/lib/runtime/print.h" |
| #include "sw/device/silicon_creator/lib/base/abs_mmio.h" |
| #include "sw/device/silicon_creator/lib/drivers/alert.h" |
| #include "sw/device/silicon_creator/lib/drivers/lifecycle.h" |
| |
| #include "alert_handler_regs.h" |
| #include "flash_ctrl_regs.h" |
| #include "hw/top_earlgrey/sw/autogen/top_earlgrey.h" |
| #include "keymgr_regs.h" |
| #include "otp_ctrl_regs.h" |
| #include "sram_ctrl_regs.h" |
| |
| static_assert(ALERT_HANDLER_ALERT_CLASS_MULTIREG_COUNT <= |
| OTP_CTRL_PARAM_ROM_ALERT_CLASSIFICATION_SIZE / 4, |
| "More alerts than alert classification OTP words!"); |
| |
| #define NO_MODIFIERS |
| |
| #ifdef OT_OFF_TARGET_TEST |
| // If we're building as a unit test, rename the shutdown functions so they |
| // can be mocked and/or tested individually. |
| // The unmodified function name will be declared as `extern` so the test |
| // program can supply its own implementation. The implementation present |
| // in this file will be named `unmocked_${name}` so the test program can |
| // invoke it for testing. |
| #define SHUTDOWN_FUNC(modifiers_, name_) \ |
| extern void name_; \ |
| void unmocked_##name_ |
| #else |
| #define SHUTDOWN_FUNC(modifiers_, name_) \ |
| static ALWAYS_INLINE modifiers_ void name_ |
| #endif |
| |
| // TODO: use the real OTP driver after it's converted to abs_mmio. |
| #ifdef OT_OFF_TARGET_TEST |
| extern uint32_t otp_read32(uint32_t address); |
| #else |
| inline uint32_t otp_read32(uint32_t address) { |
| return abs_mmio_read32(TOP_EARLGREY_OTP_CTRL_BASE_ADDR + |
| OTP_CTRL_SW_CFG_WINDOW_REG_OFFSET + address); |
| } |
| #endif |
| |
| // Convert the alert class to an index. |
| // This is required because I expect to change the constant definitions in |
| // alert_class_t to have reasonable hamming distances. |
| static size_t clsindex(alert_class_t cls) { |
| switch (cls) { |
| case kAlertClassA: |
| return 0; |
| case kAlertClassB: |
| return 1; |
| case kAlertClassC: |
| return 2; |
| case kAlertClassD: |
| return 3; |
| default: |
| return 0; |
| } |
| } |
| |
| rom_error_t shutdown_init(lifecycle_state_t lc_state) { |
| // Are we in a lifecycle state which needs alert configuration? |
| uint32_t lc_shift; |
| switch (lc_state) { |
| case kLcStateProd: |
| lc_shift = 0; |
| break; |
| case kLcStateProdEnd: |
| lc_shift = 8; |
| break; |
| case kLcStateDev: |
| lc_shift = 16; |
| break; |
| case kLcStateRma: |
| lc_shift = 24; |
| break; |
| default: |
| // No alert init for any other lifecycle states. |
| return kErrorOk; |
| } |
| |
| // Get the enable and escalation settings for all four alert classes. |
| // Each of these OTP words is composed of 4 byte enums with the enable and |
| // escalate configs per alert class (a/b/c/d). |
| uint32_t class_enable = otp_read32(OTP_CTRL_PARAM_ROM_ALERT_CLASS_EN_OFFSET); |
| uint32_t class_escalate = |
| otp_read32(OTP_CTRL_PARAM_ROM_ALERT_ESCALATION_OFFSET); |
| alert_enable_t enable[ALERT_CLASSES]; |
| alert_escalate_t escalate[ALERT_CLASSES]; |
| for (size_t i = 0; i < ALERT_CLASSES; ++i) { |
| enable[i] = (alert_enable_t)bitfield_field32_read( |
| class_enable, (bitfield_field32_t){.mask = 0xff, .index = i * 8}); |
| escalate[i] = (alert_escalate_t)bitfield_field32_read( |
| class_escalate, (bitfield_field32_t){.mask = 0xff, .index = i * 8}); |
| } |
| |
| // For each alert, read its corresponding OTP word and extract the class |
| // configuration for the current lifecycle state. |
| rom_error_t error = kErrorOk; |
| for (size_t i = 0; i < ALERT_HANDLER_ALERT_CLASS_MULTIREG_COUNT; ++i) { |
| uint32_t value = otp_read32(OTP_CTRL_PARAM_ROM_ALERT_CLASSIFICATION_OFFSET + |
| i * sizeof(uint32_t)); |
| alert_class_t cls = (alert_class_t)bitfield_field32_read( |
| value, (bitfield_field32_t){.mask = 0xff, .index = lc_shift}); |
| rom_error_t e = alert_configure(i, cls, enable[clsindex(cls)]); |
| if (e != kErrorOk) { |
| // Keep going if there is an error programming one alert. We want to |
| // program them all. |
| error = e; |
| } |
| } |
| |
| #if 0 |
| // TODO(lowRISC/opentitan#7148): Bring local alerts back into the code path. |
| // For each local alert, read its corresponding OTP word and extract the class |
| // configuration for the current lifecycle state. |
| for (size_t i = 0; i < ALERT_HANDLER_LOC_ALERT_CLASS_MULTIREG_COUNT; ++i) { |
| uint32_t value = otp_read32(OTP_CTRL_PARAM_ROM_LOCAL_ALERT_CLASSIFICATION_OFFSET + |
| i * sizeof(uint32_t)); |
| alert_class_t cls = (alert_class_t)bitfield_field32_read( |
| value, (bitfield_field32_t){.mask = 0xff, .index = lc_shift}); |
| rom_error_t e = alert_local_configure(i, cls, enable[clsindex(cls)]); |
| if (e != kErrorOk) { |
| // Keep going if there is an error programming one alert. We want to |
| // program them all. |
| error = e; |
| } |
| } |
| #endif |
| |
| // For each alert class, configure the various escalation parameters. |
| const alert_class_t kClasses[] = { |
| kAlertClassA, |
| kAlertClassB, |
| kAlertClassC, |
| kAlertClassD, |
| }; |
| alert_class_config_t config; |
| for (size_t i = 0; i < ALERT_CLASSES; ++i) { |
| config.enabled = enable[i]; |
| config.escalation = escalate[i]; |
| config.accum_threshold = otp_read32( |
| OTP_CTRL_PARAM_ROM_ALERT_ACCUM_THRESH_OFFSET + i * sizeof(uint32_t)); |
| config.timeout_cycles = otp_read32( |
| OTP_CTRL_PARAM_ROM_ALERT_TIMEOUT_CYCLES_OFFSET + i * sizeof(uint32_t)); |
| for (size_t phase = 0; phase < ARRAYSIZE(config.phase_cycles); ++phase) { |
| config.phase_cycles[phase] = otp_read32( |
| OTP_CTRL_PARAM_ROM_ALERT_PHASE_CYCLES_OFFSET + |
| (i * ARRAYSIZE(config.phase_cycles) + phase) * sizeof(uint32_t)); |
| } |
| |
| rom_error_t e = alert_class_configure(kClasses[i], &config); |
| if (e != kErrorOk) { |
| // Keep going if there is an error programming an alert class. We want to |
| // program them all. |
| error = e; |
| } |
| } |
| return error; |
| } |
| |
| uint32_t shutdown_redact(rom_error_t reason, shutdown_error_redact_t severity) { |
| uint32_t redacted = (uint32_t)reason; |
| if (reason == kErrorOk) { |
| return 0; |
| } |
| switch (severity) { |
| case kShutdownErrorRedactModule: |
| redacted = bitfield_field32_write(redacted, ROM_ERROR_FIELD_MODULE, 0); |
| FALLTHROUGH_INTENDED; |
| case kShutdownErrorRedactError: |
| redacted = bitfield_field32_write(redacted, ROM_ERROR_FIELD_ERROR, 0); |
| FALLTHROUGH_INTENDED; |
| case kShutdownErrorRedactNone: |
| break; |
| case kShutdownErrorRedactAll: |
| FALLTHROUGH_INTENDED; |
| default: |
| redacted = kErrorUnknown; |
| } |
| return redacted; |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_software_escalate(void)) { |
| // TODO(lowRISC/opentitan#7148): Use a software alert when available. |
| // For now, signal a fatal_intg_error from SRAM. |
| enum { kBase = TOP_EARLGREY_SRAM_CTRL_MAIN_BASE_ADDR }; |
| abs_mmio_write32(kBase + SRAM_CTRL_ALERT_TEST_REG_OFFSET, 1); |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_keymgr_kill(void)) { |
| enum { |
| kBase = TOP_EARLGREY_KEYMGR_BASE_ADDR, |
| }; |
| uint32_t reg = bitfield_bit32_write(0, KEYMGR_CONTROL_START_BIT, true); |
| reg = bitfield_field32_write(reg, KEYMGR_CONTROL_DEST_SEL_FIELD, |
| KEYMGR_CONTROL_DEST_SEL_VALUE_NONE); |
| reg = bitfield_field32_write(reg, KEYMGR_CONTROL_OPERATION_FIELD, |
| KEYMGR_CONTROL_OPERATION_VALUE_DISABLE); |
| abs_mmio_write32(kBase + KEYMGR_CONTROL_REG_OFFSET, reg); |
| abs_mmio_write32(kBase + KEYMGR_SIDELOAD_CLEAR_REG_OFFSET, 1); |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_flash_kill(void)) { |
| enum { kBase = TOP_EARLGREY_FLASH_CTRL_CORE_BASE_ADDR }; |
| // TODO(lowRISC/opentitan#7148): Add flash disable when the hw is implemented. |
| // abs_mmio_write32(kBase + FLASH_CTRL_FLASH_DISABLE_REG_OFFSET, 1); |
| } |
| |
| SHUTDOWN_FUNC(noreturn, shutdown_hang(void)) { |
| enum { kSramCtrlBase = TOP_EARLGREY_SRAM_CTRL_MAIN_BASE_ADDR }; |
| |
| // Disable SRAM execution and lock the register. |
| abs_mmio_write32(kSramCtrlBase + SRAM_CTRL_EXEC_EN_OFFSET, 0); |
| abs_mmio_write32(kSramCtrlBase + SRAM_CTRL_EXEC_REGWEN_REG_OFFSET, 0); |
| |
| // Switch to assembly as RAM (incl. stack) is about to get scrambled. |
| #ifdef OT_PLATFORM_RV32 |
| while (true) { |
| asm volatile( |
| // Request a new scrambling key, then lock the SRAM control register. |
| "sw %[kRenewKey], %[kCtrlOffset](%[kMainRamCtrlBase]);" |
| "sw zero, %[kRegWriteEn](%[kMainRamCtrlBase]);" |
| |
| // TODO(lowRISC/opentitan#7148): restrict the ePMP such that only |
| // ROM may execute. mundaym's suggestion: set entry 2 as a NAPOT |
| // region covering the entire address space, clear all its permission |
| // bits and set the lock bit, and then finally disable RLB to prevent |
| // any further modifications. |
| |
| // Generate a halt-maze. |
| "1:" |
| "wfi; wfi; wfi; wfi; j 1b;" |
| "wfi; wfi; j 1b;" |
| "wfi; j 1b;" |
| "wfi;" |
| : |
| : [kRenewKey] "r"(1 << SRAM_CTRL_CTRL_RENEW_SCR_KEY_BIT), |
| [kCtrlOffset] "I"(SRAM_CTRL_CTRL_REG_OFFSET), |
| [kMainRamCtrlBase] "r"(kSramCtrlBase), |
| [kRegWriteEn] "I"(SRAM_CTRL_CTRL_REGWEN_REG_OFFSET)); |
| } |
| #endif |
| } |
| |
| void shutdown_finalize(rom_error_t reason) { |
| uint32_t redacted_error = shutdown_redact( |
| reason, otp_read32(OTP_CTRL_PARAM_ROM_ERROR_REPORTING_OFFSET)); |
| base_printf("boot_fault: 0x%08x\n", redacted_error); |
| shutdown_software_escalate(); |
| shutdown_keymgr_kill(); |
| shutdown_flash_kill(); |
| // If we get here, we'll wait for the watchdog to reset the chip. |
| shutdown_hang(); |
| } |