blob: 029d946d5e5aeaf3110a2d8633aaa2d87145bbae [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module pattgen_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output pattgen_reg_pkg::pattgen_reg2hw_t reg2hw, // Write
input pattgen_reg_pkg::pattgen_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import pattgen_reg_pkg::* ;
localparam int AW = 6;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
// connect this to intg_err later when all DV / hosts are hooked up
.err_o()
);
assign intg_err = 1'b0;
// Once integrity error is detected, it does not let go until reset.
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_o <= '0;
end else if (intg_err) begin
intg_err_o <= 1'b1;
end
end
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_done_ch0_qs;
logic intr_state_done_ch0_wd;
logic intr_state_done_ch0_we;
logic intr_state_done_ch1_qs;
logic intr_state_done_ch1_wd;
logic intr_state_done_ch1_we;
logic intr_enable_done_ch0_qs;
logic intr_enable_done_ch0_wd;
logic intr_enable_done_ch0_we;
logic intr_enable_done_ch1_qs;
logic intr_enable_done_ch1_wd;
logic intr_enable_done_ch1_we;
logic intr_test_done_ch0_wd;
logic intr_test_done_ch0_we;
logic intr_test_done_ch1_wd;
logic intr_test_done_ch1_we;
logic ctrl_enable_ch0_qs;
logic ctrl_enable_ch0_wd;
logic ctrl_enable_ch0_we;
logic ctrl_enable_ch1_qs;
logic ctrl_enable_ch1_wd;
logic ctrl_enable_ch1_we;
logic ctrl_polarity_ch0_qs;
logic ctrl_polarity_ch0_wd;
logic ctrl_polarity_ch0_we;
logic ctrl_polarity_ch1_qs;
logic ctrl_polarity_ch1_wd;
logic ctrl_polarity_ch1_we;
logic [31:0] prediv_ch0_qs;
logic [31:0] prediv_ch0_wd;
logic prediv_ch0_we;
logic [31:0] prediv_ch1_qs;
logic [31:0] prediv_ch1_wd;
logic prediv_ch1_we;
logic [31:0] data_ch0_0_qs;
logic [31:0] data_ch0_0_wd;
logic data_ch0_0_we;
logic [31:0] data_ch0_1_qs;
logic [31:0] data_ch0_1_wd;
logic data_ch0_1_we;
logic [31:0] data_ch1_0_qs;
logic [31:0] data_ch1_0_wd;
logic data_ch1_0_we;
logic [31:0] data_ch1_1_qs;
logic [31:0] data_ch1_1_wd;
logic data_ch1_1_we;
logic [5:0] size_len_ch0_qs;
logic [5:0] size_len_ch0_wd;
logic size_len_ch0_we;
logic [9:0] size_reps_ch0_qs;
logic [9:0] size_reps_ch0_wd;
logic size_reps_ch0_we;
logic [5:0] size_len_ch1_qs;
logic [5:0] size_len_ch1_wd;
logic size_len_ch1_we;
logic [9:0] size_reps_ch1_qs;
logic [9:0] size_reps_ch1_wd;
logic size_reps_ch1_we;
// Register instances
// R[intr_state]: V(False)
// F[done_ch0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_done_ch0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_done_ch0_we),
.wd (intr_state_done_ch0_wd),
// from internal hardware
.de (hw2reg.intr_state.done_ch0.de),
.d (hw2reg.intr_state.done_ch0.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.done_ch0.q ),
// to register interface (read)
.qs (intr_state_done_ch0_qs)
);
// F[done_ch1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_done_ch1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_done_ch1_we),
.wd (intr_state_done_ch1_wd),
// from internal hardware
.de (hw2reg.intr_state.done_ch1.de),
.d (hw2reg.intr_state.done_ch1.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.done_ch1.q ),
// to register interface (read)
.qs (intr_state_done_ch1_qs)
);
// R[intr_enable]: V(False)
// F[done_ch0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_done_ch0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_done_ch0_we),
.wd (intr_enable_done_ch0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.done_ch0.q ),
// to register interface (read)
.qs (intr_enable_done_ch0_qs)
);
// F[done_ch1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_done_ch1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_done_ch1_we),
.wd (intr_enable_done_ch1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.done_ch1.q ),
// to register interface (read)
.qs (intr_enable_done_ch1_qs)
);
// R[intr_test]: V(True)
// F[done_ch0]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_done_ch0 (
.re (1'b0),
.we (intr_test_done_ch0_we),
.wd (intr_test_done_ch0_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.done_ch0.qe),
.q (reg2hw.intr_test.done_ch0.q ),
.qs ()
);
// F[done_ch1]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_done_ch1 (
.re (1'b0),
.we (intr_test_done_ch1_we),
.wd (intr_test_done_ch1_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.done_ch1.qe),
.q (reg2hw.intr_test.done_ch1.q ),
.qs ()
);
// R[ctrl]: V(False)
// F[enable_ch0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_enable_ch0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_enable_ch0_we),
.wd (ctrl_enable_ch0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.enable_ch0.q ),
// to register interface (read)
.qs (ctrl_enable_ch0_qs)
);
// F[enable_ch1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_enable_ch1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_enable_ch1_we),
.wd (ctrl_enable_ch1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.enable_ch1.q ),
// to register interface (read)
.qs (ctrl_enable_ch1_qs)
);
// F[polarity_ch0]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_polarity_ch0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_polarity_ch0_we),
.wd (ctrl_polarity_ch0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.polarity_ch0.q ),
// to register interface (read)
.qs (ctrl_polarity_ch0_qs)
);
// F[polarity_ch1]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_polarity_ch1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_polarity_ch1_we),
.wd (ctrl_polarity_ch1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.polarity_ch1.q ),
// to register interface (read)
.qs (ctrl_polarity_ch1_qs)
);
// R[prediv_ch0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prediv_ch0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prediv_ch0_we),
.wd (prediv_ch0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.prediv_ch0.q ),
// to register interface (read)
.qs (prediv_ch0_qs)
);
// R[prediv_ch1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prediv_ch1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prediv_ch1_we),
.wd (prediv_ch1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.prediv_ch1.q ),
// to register interface (read)
.qs (prediv_ch1_qs)
);
// Subregister 0 of Multireg data_ch0
// R[data_ch0_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_data_ch0_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_ch0_0_we),
.wd (data_ch0_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.data_ch0[0].q ),
// to register interface (read)
.qs (data_ch0_0_qs)
);
// Subregister 1 of Multireg data_ch0
// R[data_ch0_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_data_ch0_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_ch0_1_we),
.wd (data_ch0_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.data_ch0[1].q ),
// to register interface (read)
.qs (data_ch0_1_qs)
);
// Subregister 0 of Multireg data_ch1
// R[data_ch1_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_data_ch1_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_ch1_0_we),
.wd (data_ch1_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.data_ch1[0].q ),
// to register interface (read)
.qs (data_ch1_0_qs)
);
// Subregister 1 of Multireg data_ch1
// R[data_ch1_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_data_ch1_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_ch1_1_we),
.wd (data_ch1_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.data_ch1[1].q ),
// to register interface (read)
.qs (data_ch1_1_qs)
);
// R[size]: V(False)
// F[len_ch0]: 5:0
prim_subreg #(
.DW (6),
.SWACCESS("RW"),
.RESVAL (6'h0)
) u_size_len_ch0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (size_len_ch0_we),
.wd (size_len_ch0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.size.len_ch0.q ),
// to register interface (read)
.qs (size_len_ch0_qs)
);
// F[reps_ch0]: 15:6
prim_subreg #(
.DW (10),
.SWACCESS("RW"),
.RESVAL (10'h0)
) u_size_reps_ch0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (size_reps_ch0_we),
.wd (size_reps_ch0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.size.reps_ch0.q ),
// to register interface (read)
.qs (size_reps_ch0_qs)
);
// F[len_ch1]: 21:16
prim_subreg #(
.DW (6),
.SWACCESS("RW"),
.RESVAL (6'h0)
) u_size_len_ch1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (size_len_ch1_we),
.wd (size_len_ch1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.size.len_ch1.q ),
// to register interface (read)
.qs (size_len_ch1_qs)
);
// F[reps_ch1]: 31:22
prim_subreg #(
.DW (10),
.SWACCESS("RW"),
.RESVAL (10'h0)
) u_size_reps_ch1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (size_reps_ch1_we),
.wd (size_reps_ch1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.size.reps_ch1.q ),
// to register interface (read)
.qs (size_reps_ch1_qs)
);
logic [10:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == PATTGEN_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == PATTGEN_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == PATTGEN_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == PATTGEN_CTRL_OFFSET);
addr_hit[ 4] = (reg_addr == PATTGEN_PREDIV_CH0_OFFSET);
addr_hit[ 5] = (reg_addr == PATTGEN_PREDIV_CH1_OFFSET);
addr_hit[ 6] = (reg_addr == PATTGEN_DATA_CH0_0_OFFSET);
addr_hit[ 7] = (reg_addr == PATTGEN_DATA_CH0_1_OFFSET);
addr_hit[ 8] = (reg_addr == PATTGEN_DATA_CH1_0_OFFSET);
addr_hit[ 9] = (reg_addr == PATTGEN_DATA_CH1_1_OFFSET);
addr_hit[10] = (reg_addr == PATTGEN_SIZE_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (PATTGEN_PERMIT[ 0] != (PATTGEN_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (PATTGEN_PERMIT[ 1] != (PATTGEN_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (PATTGEN_PERMIT[ 2] != (PATTGEN_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (PATTGEN_PERMIT[ 3] != (PATTGEN_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (PATTGEN_PERMIT[ 4] != (PATTGEN_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (PATTGEN_PERMIT[ 5] != (PATTGEN_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (PATTGEN_PERMIT[ 6] != (PATTGEN_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (PATTGEN_PERMIT[ 7] != (PATTGEN_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (PATTGEN_PERMIT[ 8] != (PATTGEN_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (PATTGEN_PERMIT[ 9] != (PATTGEN_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (PATTGEN_PERMIT[10] != (PATTGEN_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
end
assign intr_state_done_ch0_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_done_ch0_wd = reg_wdata[0];
assign intr_state_done_ch1_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_done_ch1_wd = reg_wdata[1];
assign intr_enable_done_ch0_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_done_ch0_wd = reg_wdata[0];
assign intr_enable_done_ch1_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_done_ch1_wd = reg_wdata[1];
assign intr_test_done_ch0_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_done_ch0_wd = reg_wdata[0];
assign intr_test_done_ch1_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_done_ch1_wd = reg_wdata[1];
assign ctrl_enable_ch0_we = addr_hit[3] & reg_we & !reg_error;
assign ctrl_enable_ch0_wd = reg_wdata[0];
assign ctrl_enable_ch1_we = addr_hit[3] & reg_we & !reg_error;
assign ctrl_enable_ch1_wd = reg_wdata[1];
assign ctrl_polarity_ch0_we = addr_hit[3] & reg_we & !reg_error;
assign ctrl_polarity_ch0_wd = reg_wdata[2];
assign ctrl_polarity_ch1_we = addr_hit[3] & reg_we & !reg_error;
assign ctrl_polarity_ch1_wd = reg_wdata[3];
assign prediv_ch0_we = addr_hit[4] & reg_we & !reg_error;
assign prediv_ch0_wd = reg_wdata[31:0];
assign prediv_ch1_we = addr_hit[5] & reg_we & !reg_error;
assign prediv_ch1_wd = reg_wdata[31:0];
assign data_ch0_0_we = addr_hit[6] & reg_we & !reg_error;
assign data_ch0_0_wd = reg_wdata[31:0];
assign data_ch0_1_we = addr_hit[7] & reg_we & !reg_error;
assign data_ch0_1_wd = reg_wdata[31:0];
assign data_ch1_0_we = addr_hit[8] & reg_we & !reg_error;
assign data_ch1_0_wd = reg_wdata[31:0];
assign data_ch1_1_we = addr_hit[9] & reg_we & !reg_error;
assign data_ch1_1_wd = reg_wdata[31:0];
assign size_len_ch0_we = addr_hit[10] & reg_we & !reg_error;
assign size_len_ch0_wd = reg_wdata[5:0];
assign size_reps_ch0_we = addr_hit[10] & reg_we & !reg_error;
assign size_reps_ch0_wd = reg_wdata[15:6];
assign size_len_ch1_we = addr_hit[10] & reg_we & !reg_error;
assign size_len_ch1_wd = reg_wdata[21:16];
assign size_reps_ch1_we = addr_hit[10] & reg_we & !reg_error;
assign size_reps_ch1_wd = reg_wdata[31:22];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_done_ch0_qs;
reg_rdata_next[1] = intr_state_done_ch1_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_done_ch0_qs;
reg_rdata_next[1] = intr_enable_done_ch1_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = ctrl_enable_ch0_qs;
reg_rdata_next[1] = ctrl_enable_ch1_qs;
reg_rdata_next[2] = ctrl_polarity_ch0_qs;
reg_rdata_next[3] = ctrl_polarity_ch1_qs;
end
addr_hit[4]: begin
reg_rdata_next[31:0] = prediv_ch0_qs;
end
addr_hit[5]: begin
reg_rdata_next[31:0] = prediv_ch1_qs;
end
addr_hit[6]: begin
reg_rdata_next[31:0] = data_ch0_0_qs;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = data_ch0_1_qs;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = data_ch1_0_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = data_ch1_1_qs;
end
addr_hit[10]: begin
reg_rdata_next[5:0] = size_len_ch0_qs;
reg_rdata_next[15:6] = size_reps_ch0_qs;
reg_rdata_next[21:16] = size_len_ch1_qs;
reg_rdata_next[31:22] = size_reps_ch1_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule