blob: e28580aa03907268602e361458302395e4fb4774 [file] [log] [blame]
//! High-level setup and interrupt mapping for the chip.
use tock::kernel;
use tock::rv32i;
use core::fmt::Write;
use core::hint::unreachable_unchecked;
use kernel::common::registers::FieldValue;
use kernel::debug;
use rv32i::csr::{mcause, mie::mie, mip::mip, mtvec::mtvec, CSR};
use rv32i::syscall::SysCall;
use crate::chip_config::DEVICE_CONFIG;
use crate::gpio;
use crate::interrupts;
use crate::plic;
use crate::timer;
use crate::uart;
pub const CHIP_FREQ: u32 = DEVICE_CONFIG.chip_freq;
pub struct Earlgrey {
userspace_kernel_boundary: SysCall,
pmp: rv32i::pmp::PMPConfig,
}
impl Earlgrey {
pub unsafe fn new() -> Earlgrey {
Earlgrey {
userspace_kernel_boundary: SysCall::new(),
pmp: rv32i::pmp::PMPConfig::new(4),
}
}
pub unsafe fn enable_plic_interrupts(&self) {
plic::disable_all();
plic::clear_all_pending();
plic::enable_all();
}
unsafe fn handle_plic_interrupts() {
while let Some(interrupt) = plic::next_pending() {
match interrupt {
interrupts::UART_TX_WATERMARK..=interrupts::UART_RX_PARITY_ERR => {
uart::UART0.handle_interrupt()
}
int_pin @ interrupts::GPIO_PIN0..=interrupts::GPIO_PIN31 => {
let pin = &gpio::PORT[(int_pin - interrupts::GPIO_PIN0) as usize];
pin.handle_interrupt();
}
_ => debug!("Pidx {}", interrupt),
}
plic::complete(interrupt);
}
}
}
impl kernel::Chip for Earlgrey {
type MPU = rv32i::pmp::PMPConfig;
type UserspaceKernelBoundary = SysCall;
type SysTick = ();
fn mpu(&self) -> &Self::MPU {
&self.pmp
}
fn systick(&self) -> &Self::SysTick {
&()
}
fn userspace_kernel_boundary(&self) -> &SysCall {
&self.userspace_kernel_boundary
}
fn service_pending_interrupts(&self) {
let mut reenable_intr = FieldValue::<u32, mie::Register>::new(0, 0, 0);
loop {
let mip = CSR.mip.extract();
if mip.is_set(mip::mtimer) {
unsafe {
timer::TIMER.service_interrupt();
}
reenable_intr += mie::mtimer::SET;
}
if mip.is_set(mip::mext) {
unsafe {
Self::handle_plic_interrupts();
}
reenable_intr += mie::mext::SET;
}
if !mip.matches_any(mip::mext::SET + mip::mtimer::SET) {
break;
}
}
// re-enable any interrupt classes which we handled
CSR.mie.modify(reenable_intr);
}
fn has_pending_interrupts(&self) -> bool {
let mip = CSR.mip.extract();
mip.matches_any(mip::mext::SET + mip::mtimer::SET)
}
fn sleep(&self) {
unsafe {
rv32i::support::wfi();
}
}
unsafe fn atomic<F, R>(&self, f: F) -> R
where
F: FnOnce() -> R,
{
rv32i::support::atomic(f)
}
unsafe fn print_state(&self, writer: &mut dyn Write) {
rv32i::print_riscv_state(writer);
}
}
fn handle_exception(exception: mcause::Exception) {
match exception {
mcause::Exception::UserEnvCall | mcause::Exception::SupervisorEnvCall => (),
mcause::Exception::InstructionMisaligned
| mcause::Exception::InstructionFault
| mcause::Exception::IllegalInstruction
| mcause::Exception::Breakpoint
| mcause::Exception::LoadMisaligned
| mcause::Exception::LoadFault
| mcause::Exception::StoreMisaligned
| mcause::Exception::StoreFault
| mcause::Exception::MachineEnvCall
| mcause::Exception::InstructionPageFault
| mcause::Exception::LoadPageFault
| mcause::Exception::StorePageFault
| mcause::Exception::Unknown => {
panic!("fatal exception");
}
}
}
unsafe fn handle_interrupt(intr: mcause::Interrupt) {
match intr {
mcause::Interrupt::UserSoft
| mcause::Interrupt::UserTimer
| mcause::Interrupt::UserExternal => {
debug!("unexpected user-mode interrupt");
}
mcause::Interrupt::SupervisorExternal
| mcause::Interrupt::SupervisorTimer
| mcause::Interrupt::SupervisorSoft => {
debug!("unexpected supervisor-mode interrupt");
}
mcause::Interrupt::MachineSoft => {
CSR.mie.modify(mie::msoft::CLEAR);
}
mcause::Interrupt::MachineTimer => {
CSR.mie.modify(mie::mtimer::CLEAR);
}
mcause::Interrupt::MachineExternal => {
CSR.mie.modify(mie::mext::CLEAR);
}
mcause::Interrupt::Unknown => {
debug!("interrupt of unknown cause");
}
}
}
/// Trap handler for board/chip specific code.
///
/// For the Ibex this gets called when an interrupt occurs while the chip is
/// in kernel mode. All we need to do is check which interrupt occurred and
/// disable it.
#[export_name = "_start_trap_rust"]
pub unsafe extern "C" fn start_trap_rust() {
match mcause::Trap::from(CSR.mcause.extract()) {
mcause::Trap::Interrupt(interrupt) => {
handle_interrupt(interrupt);
}
mcause::Trap::Exception(exception) => {
handle_exception(exception);
}
}
}
/// Function that gets called if an interrupt occurs while an app was running.
/// mcause is passed in, and this function should correctly handle disabling the
/// interrupt that fired so that it does not trigger again.
#[export_name = "_disable_interrupt_trap_handler"]
pub unsafe extern "C" fn disable_interrupt_trap_handler(mcause_val: u32) {
match mcause::Trap::from(mcause_val) {
mcause::Trap::Interrupt(interrupt) => {
handle_interrupt(interrupt);
}
_ => {
panic!("unexpected non-interrupt\n");
}
}
}
pub unsafe fn configure_trap_handler() {
// The Ibex CPU does not support non-vectored trap entries.
CSR.mtvec
.write(mtvec::trap_addr.val(_start_trap_vectored as u32 >> 2) + mtvec::mode::Vectored)
}
#[link_section = ".riscv.trap_vectored"]
#[export_name = "_start_trap_vectored"]
#[naked]
pub extern "C" fn _start_trap_vectored() -> ! {
unsafe {
// According to the Ibex user manual:
// [NMI] has interrupt ID 31, i.e., it has the highest priority of all
// interrupts and the core jumps to the trap-handler base address (in
// mtvec) plus 0x7C to handle the NMI.
//
// Below are 32 (non-compressed) jumps to cover the entire possible
// range of vectored traps.
#[cfg(all(target_arch = "riscv32", target_os = "none"))]
asm!("
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
j _start_trap
"
:
:
:
: "volatile");
unreachable_unchecked()
}
}