blob: edc0c32b55ab65de4f0daf4c964f53f4317e953e [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module aes_reg_top (
input clk_i,
input rst_ni,
input rst_shadowed_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output aes_reg_pkg::aes_reg2hw_t reg2hw, // Write
input aes_reg_pkg::aes_hw2reg_t hw2reg, // Read
output logic shadowed_storage_err_o,
output logic shadowed_update_err_o,
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import aes_reg_pkg::* ;
localparam int AW = 8;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [33:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(34)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic alert_test_we;
logic alert_test_recov_ctrl_update_err_wd;
logic alert_test_fatal_fault_wd;
logic key_share0_0_we;
logic [31:0] key_share0_0_wd;
logic key_share0_1_we;
logic [31:0] key_share0_1_wd;
logic key_share0_2_we;
logic [31:0] key_share0_2_wd;
logic key_share0_3_we;
logic [31:0] key_share0_3_wd;
logic key_share0_4_we;
logic [31:0] key_share0_4_wd;
logic key_share0_5_we;
logic [31:0] key_share0_5_wd;
logic key_share0_6_we;
logic [31:0] key_share0_6_wd;
logic key_share0_7_we;
logic [31:0] key_share0_7_wd;
logic key_share1_0_we;
logic [31:0] key_share1_0_wd;
logic key_share1_1_we;
logic [31:0] key_share1_1_wd;
logic key_share1_2_we;
logic [31:0] key_share1_2_wd;
logic key_share1_3_we;
logic [31:0] key_share1_3_wd;
logic key_share1_4_we;
logic [31:0] key_share1_4_wd;
logic key_share1_5_we;
logic [31:0] key_share1_5_wd;
logic key_share1_6_we;
logic [31:0] key_share1_6_wd;
logic key_share1_7_we;
logic [31:0] key_share1_7_wd;
logic iv_0_re;
logic iv_0_we;
logic [31:0] iv_0_qs;
logic [31:0] iv_0_wd;
logic iv_1_re;
logic iv_1_we;
logic [31:0] iv_1_qs;
logic [31:0] iv_1_wd;
logic iv_2_re;
logic iv_2_we;
logic [31:0] iv_2_qs;
logic [31:0] iv_2_wd;
logic iv_3_re;
logic iv_3_we;
logic [31:0] iv_3_qs;
logic [31:0] iv_3_wd;
logic data_in_0_we;
logic [31:0] data_in_0_wd;
logic data_in_1_we;
logic [31:0] data_in_1_wd;
logic data_in_2_we;
logic [31:0] data_in_2_wd;
logic data_in_3_we;
logic [31:0] data_in_3_wd;
logic data_out_0_re;
logic [31:0] data_out_0_qs;
logic data_out_1_re;
logic [31:0] data_out_1_qs;
logic data_out_2_re;
logic [31:0] data_out_2_qs;
logic data_out_3_re;
logic [31:0] data_out_3_qs;
logic ctrl_shadowed_re;
logic ctrl_shadowed_we;
logic [1:0] ctrl_shadowed_operation_qs;
logic [1:0] ctrl_shadowed_operation_wd;
logic [5:0] ctrl_shadowed_mode_qs;
logic [5:0] ctrl_shadowed_mode_wd;
logic [2:0] ctrl_shadowed_key_len_qs;
logic [2:0] ctrl_shadowed_key_len_wd;
logic ctrl_shadowed_sideload_qs;
logic ctrl_shadowed_sideload_wd;
logic [2:0] ctrl_shadowed_prng_reseed_rate_qs;
logic [2:0] ctrl_shadowed_prng_reseed_rate_wd;
logic ctrl_shadowed_manual_operation_qs;
logic ctrl_shadowed_manual_operation_wd;
logic ctrl_aux_shadowed_re;
logic ctrl_aux_shadowed_we;
logic ctrl_aux_shadowed_key_touch_forces_reseed_qs;
logic ctrl_aux_shadowed_key_touch_forces_reseed_wd;
logic ctrl_aux_shadowed_key_touch_forces_reseed_storage_err;
logic ctrl_aux_shadowed_key_touch_forces_reseed_update_err;
logic ctrl_aux_shadowed_force_masks_qs;
logic ctrl_aux_shadowed_force_masks_wd;
logic ctrl_aux_shadowed_force_masks_storage_err;
logic ctrl_aux_shadowed_force_masks_update_err;
logic ctrl_aux_regwen_we;
logic ctrl_aux_regwen_qs;
logic ctrl_aux_regwen_wd;
logic trigger_we;
logic trigger_start_wd;
logic trigger_key_iv_data_in_clear_wd;
logic trigger_data_out_clear_wd;
logic trigger_prng_reseed_wd;
logic status_idle_qs;
logic status_stall_qs;
logic status_output_lost_qs;
logic status_output_valid_qs;
logic status_input_ready_qs;
logic status_alert_recov_ctrl_update_err_qs;
logic status_alert_fatal_fault_qs;
// Register instances
// R[alert_test]: V(True)
logic alert_test_qe;
logic [1:0] alert_test_flds_we;
assign alert_test_qe = &alert_test_flds_we;
// F[recov_ctrl_update_err]: 0:0
prim_subreg_ext #(
.DW (1)
) u_alert_test_recov_ctrl_update_err (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_recov_ctrl_update_err_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[0]),
.q (reg2hw.alert_test.recov_ctrl_update_err.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.recov_ctrl_update_err.qe = alert_test_qe;
// F[fatal_fault]: 1:1
prim_subreg_ext #(
.DW (1)
) u_alert_test_fatal_fault (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_fatal_fault_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[1]),
.q (reg2hw.alert_test.fatal_fault.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.fatal_fault.qe = alert_test_qe;
// Subregister 0 of Multireg key_share0
// R[key_share0_0]: V(True)
logic key_share0_0_qe;
logic [0:0] key_share0_0_flds_we;
assign key_share0_0_qe = &key_share0_0_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_0 (
.re (1'b0),
.we (key_share0_0_we),
.wd (key_share0_0_wd),
.d (hw2reg.key_share0[0].d),
.qre (),
.qe (key_share0_0_flds_we[0]),
.q (reg2hw.key_share0[0].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[0].qe = key_share0_0_qe;
// Subregister 1 of Multireg key_share0
// R[key_share0_1]: V(True)
logic key_share0_1_qe;
logic [0:0] key_share0_1_flds_we;
assign key_share0_1_qe = &key_share0_1_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_1 (
.re (1'b0),
.we (key_share0_1_we),
.wd (key_share0_1_wd),
.d (hw2reg.key_share0[1].d),
.qre (),
.qe (key_share0_1_flds_we[0]),
.q (reg2hw.key_share0[1].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[1].qe = key_share0_1_qe;
// Subregister 2 of Multireg key_share0
// R[key_share0_2]: V(True)
logic key_share0_2_qe;
logic [0:0] key_share0_2_flds_we;
assign key_share0_2_qe = &key_share0_2_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_2 (
.re (1'b0),
.we (key_share0_2_we),
.wd (key_share0_2_wd),
.d (hw2reg.key_share0[2].d),
.qre (),
.qe (key_share0_2_flds_we[0]),
.q (reg2hw.key_share0[2].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[2].qe = key_share0_2_qe;
// Subregister 3 of Multireg key_share0
// R[key_share0_3]: V(True)
logic key_share0_3_qe;
logic [0:0] key_share0_3_flds_we;
assign key_share0_3_qe = &key_share0_3_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_3 (
.re (1'b0),
.we (key_share0_3_we),
.wd (key_share0_3_wd),
.d (hw2reg.key_share0[3].d),
.qre (),
.qe (key_share0_3_flds_we[0]),
.q (reg2hw.key_share0[3].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[3].qe = key_share0_3_qe;
// Subregister 4 of Multireg key_share0
// R[key_share0_4]: V(True)
logic key_share0_4_qe;
logic [0:0] key_share0_4_flds_we;
assign key_share0_4_qe = &key_share0_4_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_4 (
.re (1'b0),
.we (key_share0_4_we),
.wd (key_share0_4_wd),
.d (hw2reg.key_share0[4].d),
.qre (),
.qe (key_share0_4_flds_we[0]),
.q (reg2hw.key_share0[4].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[4].qe = key_share0_4_qe;
// Subregister 5 of Multireg key_share0
// R[key_share0_5]: V(True)
logic key_share0_5_qe;
logic [0:0] key_share0_5_flds_we;
assign key_share0_5_qe = &key_share0_5_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_5 (
.re (1'b0),
.we (key_share0_5_we),
.wd (key_share0_5_wd),
.d (hw2reg.key_share0[5].d),
.qre (),
.qe (key_share0_5_flds_we[0]),
.q (reg2hw.key_share0[5].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[5].qe = key_share0_5_qe;
// Subregister 6 of Multireg key_share0
// R[key_share0_6]: V(True)
logic key_share0_6_qe;
logic [0:0] key_share0_6_flds_we;
assign key_share0_6_qe = &key_share0_6_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_6 (
.re (1'b0),
.we (key_share0_6_we),
.wd (key_share0_6_wd),
.d (hw2reg.key_share0[6].d),
.qre (),
.qe (key_share0_6_flds_we[0]),
.q (reg2hw.key_share0[6].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[6].qe = key_share0_6_qe;
// Subregister 7 of Multireg key_share0
// R[key_share0_7]: V(True)
logic key_share0_7_qe;
logic [0:0] key_share0_7_flds_we;
assign key_share0_7_qe = &key_share0_7_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share0_7 (
.re (1'b0),
.we (key_share0_7_we),
.wd (key_share0_7_wd),
.d (hw2reg.key_share0[7].d),
.qre (),
.qe (key_share0_7_flds_we[0]),
.q (reg2hw.key_share0[7].q),
.ds (),
.qs ()
);
assign reg2hw.key_share0[7].qe = key_share0_7_qe;
// Subregister 0 of Multireg key_share1
// R[key_share1_0]: V(True)
logic key_share1_0_qe;
logic [0:0] key_share1_0_flds_we;
assign key_share1_0_qe = &key_share1_0_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_0 (
.re (1'b0),
.we (key_share1_0_we),
.wd (key_share1_0_wd),
.d (hw2reg.key_share1[0].d),
.qre (),
.qe (key_share1_0_flds_we[0]),
.q (reg2hw.key_share1[0].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[0].qe = key_share1_0_qe;
// Subregister 1 of Multireg key_share1
// R[key_share1_1]: V(True)
logic key_share1_1_qe;
logic [0:0] key_share1_1_flds_we;
assign key_share1_1_qe = &key_share1_1_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_1 (
.re (1'b0),
.we (key_share1_1_we),
.wd (key_share1_1_wd),
.d (hw2reg.key_share1[1].d),
.qre (),
.qe (key_share1_1_flds_we[0]),
.q (reg2hw.key_share1[1].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[1].qe = key_share1_1_qe;
// Subregister 2 of Multireg key_share1
// R[key_share1_2]: V(True)
logic key_share1_2_qe;
logic [0:0] key_share1_2_flds_we;
assign key_share1_2_qe = &key_share1_2_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_2 (
.re (1'b0),
.we (key_share1_2_we),
.wd (key_share1_2_wd),
.d (hw2reg.key_share1[2].d),
.qre (),
.qe (key_share1_2_flds_we[0]),
.q (reg2hw.key_share1[2].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[2].qe = key_share1_2_qe;
// Subregister 3 of Multireg key_share1
// R[key_share1_3]: V(True)
logic key_share1_3_qe;
logic [0:0] key_share1_3_flds_we;
assign key_share1_3_qe = &key_share1_3_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_3 (
.re (1'b0),
.we (key_share1_3_we),
.wd (key_share1_3_wd),
.d (hw2reg.key_share1[3].d),
.qre (),
.qe (key_share1_3_flds_we[0]),
.q (reg2hw.key_share1[3].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[3].qe = key_share1_3_qe;
// Subregister 4 of Multireg key_share1
// R[key_share1_4]: V(True)
logic key_share1_4_qe;
logic [0:0] key_share1_4_flds_we;
assign key_share1_4_qe = &key_share1_4_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_4 (
.re (1'b0),
.we (key_share1_4_we),
.wd (key_share1_4_wd),
.d (hw2reg.key_share1[4].d),
.qre (),
.qe (key_share1_4_flds_we[0]),
.q (reg2hw.key_share1[4].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[4].qe = key_share1_4_qe;
// Subregister 5 of Multireg key_share1
// R[key_share1_5]: V(True)
logic key_share1_5_qe;
logic [0:0] key_share1_5_flds_we;
assign key_share1_5_qe = &key_share1_5_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_5 (
.re (1'b0),
.we (key_share1_5_we),
.wd (key_share1_5_wd),
.d (hw2reg.key_share1[5].d),
.qre (),
.qe (key_share1_5_flds_we[0]),
.q (reg2hw.key_share1[5].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[5].qe = key_share1_5_qe;
// Subregister 6 of Multireg key_share1
// R[key_share1_6]: V(True)
logic key_share1_6_qe;
logic [0:0] key_share1_6_flds_we;
assign key_share1_6_qe = &key_share1_6_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_6 (
.re (1'b0),
.we (key_share1_6_we),
.wd (key_share1_6_wd),
.d (hw2reg.key_share1[6].d),
.qre (),
.qe (key_share1_6_flds_we[0]),
.q (reg2hw.key_share1[6].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[6].qe = key_share1_6_qe;
// Subregister 7 of Multireg key_share1
// R[key_share1_7]: V(True)
logic key_share1_7_qe;
logic [0:0] key_share1_7_flds_we;
assign key_share1_7_qe = &key_share1_7_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_share1_7 (
.re (1'b0),
.we (key_share1_7_we),
.wd (key_share1_7_wd),
.d (hw2reg.key_share1[7].d),
.qre (),
.qe (key_share1_7_flds_we[0]),
.q (reg2hw.key_share1[7].q),
.ds (),
.qs ()
);
assign reg2hw.key_share1[7].qe = key_share1_7_qe;
// Subregister 0 of Multireg iv
// R[iv_0]: V(True)
logic iv_0_qe;
logic [0:0] iv_0_flds_we;
assign iv_0_qe = &iv_0_flds_we;
prim_subreg_ext #(
.DW (32)
) u_iv_0 (
.re (iv_0_re),
.we (iv_0_we),
.wd (iv_0_wd),
.d (hw2reg.iv[0].d),
.qre (),
.qe (iv_0_flds_we[0]),
.q (reg2hw.iv[0].q),
.ds (),
.qs (iv_0_qs)
);
assign reg2hw.iv[0].qe = iv_0_qe;
// Subregister 1 of Multireg iv
// R[iv_1]: V(True)
logic iv_1_qe;
logic [0:0] iv_1_flds_we;
assign iv_1_qe = &iv_1_flds_we;
prim_subreg_ext #(
.DW (32)
) u_iv_1 (
.re (iv_1_re),
.we (iv_1_we),
.wd (iv_1_wd),
.d (hw2reg.iv[1].d),
.qre (),
.qe (iv_1_flds_we[0]),
.q (reg2hw.iv[1].q),
.ds (),
.qs (iv_1_qs)
);
assign reg2hw.iv[1].qe = iv_1_qe;
// Subregister 2 of Multireg iv
// R[iv_2]: V(True)
logic iv_2_qe;
logic [0:0] iv_2_flds_we;
assign iv_2_qe = &iv_2_flds_we;
prim_subreg_ext #(
.DW (32)
) u_iv_2 (
.re (iv_2_re),
.we (iv_2_we),
.wd (iv_2_wd),
.d (hw2reg.iv[2].d),
.qre (),
.qe (iv_2_flds_we[0]),
.q (reg2hw.iv[2].q),
.ds (),
.qs (iv_2_qs)
);
assign reg2hw.iv[2].qe = iv_2_qe;
// Subregister 3 of Multireg iv
// R[iv_3]: V(True)
logic iv_3_qe;
logic [0:0] iv_3_flds_we;
assign iv_3_qe = &iv_3_flds_we;
prim_subreg_ext #(
.DW (32)
) u_iv_3 (
.re (iv_3_re),
.we (iv_3_we),
.wd (iv_3_wd),
.d (hw2reg.iv[3].d),
.qre (),
.qe (iv_3_flds_we[0]),
.q (reg2hw.iv[3].q),
.ds (),
.qs (iv_3_qs)
);
assign reg2hw.iv[3].qe = iv_3_qe;
// Subregister 0 of Multireg data_in
// R[data_in_0]: V(False)
logic data_in_0_qe;
logic [0:0] data_in_0_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_data_in0_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&data_in_0_flds_we),
.q_o(data_in_0_qe)
);
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (32'h0)
) u_data_in_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (data_in_0_we),
.wd (data_in_0_wd),
// from internal hardware
.de (hw2reg.data_in[0].de),
.d (hw2reg.data_in[0].d),
// to internal hardware
.qe (data_in_0_flds_we[0]),
.q (reg2hw.data_in[0].q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.data_in[0].qe = data_in_0_qe;
// Subregister 1 of Multireg data_in
// R[data_in_1]: V(False)
logic data_in_1_qe;
logic [0:0] data_in_1_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_data_in1_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&data_in_1_flds_we),
.q_o(data_in_1_qe)
);
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (32'h0)
) u_data_in_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (data_in_1_we),
.wd (data_in_1_wd),
// from internal hardware
.de (hw2reg.data_in[1].de),
.d (hw2reg.data_in[1].d),
// to internal hardware
.qe (data_in_1_flds_we[0]),
.q (reg2hw.data_in[1].q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.data_in[1].qe = data_in_1_qe;
// Subregister 2 of Multireg data_in
// R[data_in_2]: V(False)
logic data_in_2_qe;
logic [0:0] data_in_2_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_data_in2_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&data_in_2_flds_we),
.q_o(data_in_2_qe)
);
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (32'h0)
) u_data_in_2 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (data_in_2_we),
.wd (data_in_2_wd),
// from internal hardware
.de (hw2reg.data_in[2].de),
.d (hw2reg.data_in[2].d),
// to internal hardware
.qe (data_in_2_flds_we[0]),
.q (reg2hw.data_in[2].q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.data_in[2].qe = data_in_2_qe;
// Subregister 3 of Multireg data_in
// R[data_in_3]: V(False)
logic data_in_3_qe;
logic [0:0] data_in_3_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_data_in3_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&data_in_3_flds_we),
.q_o(data_in_3_qe)
);
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (32'h0)
) u_data_in_3 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (data_in_3_we),
.wd (data_in_3_wd),
// from internal hardware
.de (hw2reg.data_in[3].de),
.d (hw2reg.data_in[3].d),
// to internal hardware
.qe (data_in_3_flds_we[0]),
.q (reg2hw.data_in[3].q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.data_in[3].qe = data_in_3_qe;
// Subregister 0 of Multireg data_out
// R[data_out_0]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out_0 (
.re (data_out_0_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[0].d),
.qre (reg2hw.data_out[0].re),
.qe (),
.q (reg2hw.data_out[0].q),
.ds (),
.qs (data_out_0_qs)
);
// Subregister 1 of Multireg data_out
// R[data_out_1]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out_1 (
.re (data_out_1_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[1].d),
.qre (reg2hw.data_out[1].re),
.qe (),
.q (reg2hw.data_out[1].q),
.ds (),
.qs (data_out_1_qs)
);
// Subregister 2 of Multireg data_out
// R[data_out_2]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out_2 (
.re (data_out_2_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[2].d),
.qre (reg2hw.data_out[2].re),
.qe (),
.q (reg2hw.data_out[2].q),
.ds (),
.qs (data_out_2_qs)
);
// Subregister 3 of Multireg data_out
// R[data_out_3]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out_3 (
.re (data_out_3_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[3].d),
.qre (reg2hw.data_out[3].re),
.qe (),
.q (reg2hw.data_out[3].q),
.ds (),
.qs (data_out_3_qs)
);
// R[ctrl_shadowed]: V(True)
logic ctrl_shadowed_qe;
logic [5:0] ctrl_shadowed_flds_we;
assign ctrl_shadowed_qe = &ctrl_shadowed_flds_we;
// F[operation]: 1:0
prim_subreg_ext #(
.DW (2)
) u_ctrl_shadowed_operation (
.re (ctrl_shadowed_re),
.we (ctrl_shadowed_we),
.wd (ctrl_shadowed_operation_wd),
.d (hw2reg.ctrl_shadowed.operation.d),
.qre (reg2hw.ctrl_shadowed.operation.re),
.qe (ctrl_shadowed_flds_we[0]),
.q (reg2hw.ctrl_shadowed.operation.q),
.ds (),
.qs (ctrl_shadowed_operation_qs)
);
assign reg2hw.ctrl_shadowed.operation.qe = ctrl_shadowed_qe;
// F[mode]: 7:2
prim_subreg_ext #(
.DW (6)
) u_ctrl_shadowed_mode (
.re (ctrl_shadowed_re),
.we (ctrl_shadowed_we),
.wd (ctrl_shadowed_mode_wd),
.d (hw2reg.ctrl_shadowed.mode.d),
.qre (reg2hw.ctrl_shadowed.mode.re),
.qe (ctrl_shadowed_flds_we[1]),
.q (reg2hw.ctrl_shadowed.mode.q),
.ds (),
.qs (ctrl_shadowed_mode_qs)
);
assign reg2hw.ctrl_shadowed.mode.qe = ctrl_shadowed_qe;
// F[key_len]: 10:8
prim_subreg_ext #(
.DW (3)
) u_ctrl_shadowed_key_len (
.re (ctrl_shadowed_re),
.we (ctrl_shadowed_we),
.wd (ctrl_shadowed_key_len_wd),
.d (hw2reg.ctrl_shadowed.key_len.d),
.qre (reg2hw.ctrl_shadowed.key_len.re),
.qe (ctrl_shadowed_flds_we[2]),
.q (reg2hw.ctrl_shadowed.key_len.q),
.ds (),
.qs (ctrl_shadowed_key_len_qs)
);
assign reg2hw.ctrl_shadowed.key_len.qe = ctrl_shadowed_qe;
// F[sideload]: 11:11
prim_subreg_ext #(
.DW (1)
) u_ctrl_shadowed_sideload (
.re (ctrl_shadowed_re),
.we (ctrl_shadowed_we),
.wd (ctrl_shadowed_sideload_wd),
.d (hw2reg.ctrl_shadowed.sideload.d),
.qre (reg2hw.ctrl_shadowed.sideload.re),
.qe (ctrl_shadowed_flds_we[3]),
.q (reg2hw.ctrl_shadowed.sideload.q),
.ds (),
.qs (ctrl_shadowed_sideload_qs)
);
assign reg2hw.ctrl_shadowed.sideload.qe = ctrl_shadowed_qe;
// F[prng_reseed_rate]: 14:12
prim_subreg_ext #(
.DW (3)
) u_ctrl_shadowed_prng_reseed_rate (
.re (ctrl_shadowed_re),
.we (ctrl_shadowed_we),
.wd (ctrl_shadowed_prng_reseed_rate_wd),
.d (hw2reg.ctrl_shadowed.prng_reseed_rate.d),
.qre (reg2hw.ctrl_shadowed.prng_reseed_rate.re),
.qe (ctrl_shadowed_flds_we[4]),
.q (reg2hw.ctrl_shadowed.prng_reseed_rate.q),
.ds (),
.qs (ctrl_shadowed_prng_reseed_rate_qs)
);
assign reg2hw.ctrl_shadowed.prng_reseed_rate.qe = ctrl_shadowed_qe;
// F[manual_operation]: 15:15
prim_subreg_ext #(
.DW (1)
) u_ctrl_shadowed_manual_operation (
.re (ctrl_shadowed_re),
.we (ctrl_shadowed_we),
.wd (ctrl_shadowed_manual_operation_wd),
.d (hw2reg.ctrl_shadowed.manual_operation.d),
.qre (reg2hw.ctrl_shadowed.manual_operation.re),
.qe (ctrl_shadowed_flds_we[5]),
.q (reg2hw.ctrl_shadowed.manual_operation.q),
.ds (),
.qs (ctrl_shadowed_manual_operation_qs)
);
assign reg2hw.ctrl_shadowed.manual_operation.qe = ctrl_shadowed_qe;
// R[ctrl_aux_shadowed]: V(False)
// Create REGWEN-gated WE signal
logic ctrl_aux_shadowed_gated_we;
assign ctrl_aux_shadowed_gated_we = ctrl_aux_shadowed_we & ctrl_aux_regwen_qs;
// F[key_touch_forces_reseed]: 0:0
prim_subreg_shadow #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h1)
) u_ctrl_aux_shadowed_key_touch_forces_reseed (
.clk_i (clk_i),
.rst_ni (rst_ni),
.rst_shadowed_ni (rst_shadowed_ni),
// from register interface
.re (ctrl_aux_shadowed_re),
.we (ctrl_aux_shadowed_gated_we),
.wd (ctrl_aux_shadowed_key_touch_forces_reseed_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl_aux_shadowed.key_touch_forces_reseed.q),
.ds (),
// to register interface (read)
.qs (ctrl_aux_shadowed_key_touch_forces_reseed_qs),
// Shadow register phase. Relevant for hwext only.
.phase (),
// Shadow register error conditions
.err_update (ctrl_aux_shadowed_key_touch_forces_reseed_update_err),
.err_storage (ctrl_aux_shadowed_key_touch_forces_reseed_storage_err)
);
// F[force_masks]: 1:1
prim_subreg_shadow #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ctrl_aux_shadowed_force_masks (
.clk_i (clk_i),
.rst_ni (rst_ni),
.rst_shadowed_ni (rst_shadowed_ni),
// from register interface
.re (ctrl_aux_shadowed_re),
.we (ctrl_aux_shadowed_gated_we),
.wd (ctrl_aux_shadowed_force_masks_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl_aux_shadowed.force_masks.q),
.ds (),
// to register interface (read)
.qs (ctrl_aux_shadowed_force_masks_qs),
// Shadow register phase. Relevant for hwext only.
.phase (),
// Shadow register error conditions
.err_update (ctrl_aux_shadowed_force_masks_update_err),
.err_storage (ctrl_aux_shadowed_force_masks_storage_err)
);
// R[ctrl_aux_regwen]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_ctrl_aux_regwen (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_aux_regwen_we),
.wd (ctrl_aux_regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (ctrl_aux_regwen_qs)
);
// R[trigger]: V(False)
// F[start]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h0)
) u_trigger_start (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (trigger_we),
.wd (trigger_start_wd),
// from internal hardware
.de (hw2reg.trigger.start.de),
.d (hw2reg.trigger.start.d),
// to internal hardware
.qe (),
.q (reg2hw.trigger.start.q),
.ds (),
// to register interface (read)
.qs ()
);
// F[key_iv_data_in_clear]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h1)
) u_trigger_key_iv_data_in_clear (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (trigger_we),
.wd (trigger_key_iv_data_in_clear_wd),
// from internal hardware
.de (hw2reg.trigger.key_iv_data_in_clear.de),
.d (hw2reg.trigger.key_iv_data_in_clear.d),
// to internal hardware
.qe (),
.q (reg2hw.trigger.key_iv_data_in_clear.q),
.ds (),
// to register interface (read)
.qs ()
);
// F[data_out_clear]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h1)
) u_trigger_data_out_clear (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (trigger_we),
.wd (trigger_data_out_clear_wd),
// from internal hardware
.de (hw2reg.trigger.data_out_clear.de),
.d (hw2reg.trigger.data_out_clear.d),
// to internal hardware
.qe (),
.q (reg2hw.trigger.data_out_clear.q),
.ds (),
// to register interface (read)
.qs ()
);
// F[prng_reseed]: 3:3
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h1)
) u_trigger_prng_reseed (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (trigger_we),
.wd (trigger_prng_reseed_wd),
// from internal hardware
.de (hw2reg.trigger.prng_reseed.de),
.d (hw2reg.trigger.prng_reseed.d),
// to internal hardware
.qe (),
.q (reg2hw.trigger.prng_reseed.q),
.ds (),
// to register interface (read)
.qs ()
);
// R[status]: V(False)
// F[idle]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_idle (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.idle.de),
.d (hw2reg.status.idle.d),
// to internal hardware
.qe (),
.q (reg2hw.status.idle.q),
.ds (),
// to register interface (read)
.qs (status_idle_qs)
);
// F[stall]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_stall (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.stall.de),
.d (hw2reg.status.stall.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (status_stall_qs)
);
// F[output_lost]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_output_lost (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.output_lost.de),
.d (hw2reg.status.output_lost.d),
// to internal hardware
.qe (),
.q (reg2hw.status.output_lost.q),
.ds (),
// to register interface (read)
.qs (status_output_lost_qs)
);
// F[output_valid]: 3:3
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_output_valid (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.output_valid.de),
.d (hw2reg.status.output_valid.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (status_output_valid_qs)
);
// F[input_ready]: 4:4
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_input_ready (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.input_ready.de),
.d (hw2reg.status.input_ready.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (status_input_ready_qs)
);
// F[alert_recov_ctrl_update_err]: 5:5
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_alert_recov_ctrl_update_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.alert_recov_ctrl_update_err.de),
.d (hw2reg.status.alert_recov_ctrl_update_err.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (status_alert_recov_ctrl_update_err_qs)
);
// F[alert_fatal_fault]: 6:6
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_alert_fatal_fault (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.alert_fatal_fault.de),
.d (hw2reg.status.alert_fatal_fault.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (status_alert_fatal_fault_qs)
);
logic [33:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == AES_ALERT_TEST_OFFSET);
addr_hit[ 1] = (reg_addr == AES_KEY_SHARE0_0_OFFSET);
addr_hit[ 2] = (reg_addr == AES_KEY_SHARE0_1_OFFSET);
addr_hit[ 3] = (reg_addr == AES_KEY_SHARE0_2_OFFSET);
addr_hit[ 4] = (reg_addr == AES_KEY_SHARE0_3_OFFSET);
addr_hit[ 5] = (reg_addr == AES_KEY_SHARE0_4_OFFSET);
addr_hit[ 6] = (reg_addr == AES_KEY_SHARE0_5_OFFSET);
addr_hit[ 7] = (reg_addr == AES_KEY_SHARE0_6_OFFSET);
addr_hit[ 8] = (reg_addr == AES_KEY_SHARE0_7_OFFSET);
addr_hit[ 9] = (reg_addr == AES_KEY_SHARE1_0_OFFSET);
addr_hit[10] = (reg_addr == AES_KEY_SHARE1_1_OFFSET);
addr_hit[11] = (reg_addr == AES_KEY_SHARE1_2_OFFSET);
addr_hit[12] = (reg_addr == AES_KEY_SHARE1_3_OFFSET);
addr_hit[13] = (reg_addr == AES_KEY_SHARE1_4_OFFSET);
addr_hit[14] = (reg_addr == AES_KEY_SHARE1_5_OFFSET);
addr_hit[15] = (reg_addr == AES_KEY_SHARE1_6_OFFSET);
addr_hit[16] = (reg_addr == AES_KEY_SHARE1_7_OFFSET);
addr_hit[17] = (reg_addr == AES_IV_0_OFFSET);
addr_hit[18] = (reg_addr == AES_IV_1_OFFSET);
addr_hit[19] = (reg_addr == AES_IV_2_OFFSET);
addr_hit[20] = (reg_addr == AES_IV_3_OFFSET);
addr_hit[21] = (reg_addr == AES_DATA_IN_0_OFFSET);
addr_hit[22] = (reg_addr == AES_DATA_IN_1_OFFSET);
addr_hit[23] = (reg_addr == AES_DATA_IN_2_OFFSET);
addr_hit[24] = (reg_addr == AES_DATA_IN_3_OFFSET);
addr_hit[25] = (reg_addr == AES_DATA_OUT_0_OFFSET);
addr_hit[26] = (reg_addr == AES_DATA_OUT_1_OFFSET);
addr_hit[27] = (reg_addr == AES_DATA_OUT_2_OFFSET);
addr_hit[28] = (reg_addr == AES_DATA_OUT_3_OFFSET);
addr_hit[29] = (reg_addr == AES_CTRL_SHADOWED_OFFSET);
addr_hit[30] = (reg_addr == AES_CTRL_AUX_SHADOWED_OFFSET);
addr_hit[31] = (reg_addr == AES_CTRL_AUX_REGWEN_OFFSET);
addr_hit[32] = (reg_addr == AES_TRIGGER_OFFSET);
addr_hit[33] = (reg_addr == AES_STATUS_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(AES_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(AES_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(AES_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(AES_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(AES_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(AES_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(AES_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(AES_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(AES_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(AES_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(AES_PERMIT[10] & ~reg_be))) |
(addr_hit[11] & (|(AES_PERMIT[11] & ~reg_be))) |
(addr_hit[12] & (|(AES_PERMIT[12] & ~reg_be))) |
(addr_hit[13] & (|(AES_PERMIT[13] & ~reg_be))) |
(addr_hit[14] & (|(AES_PERMIT[14] & ~reg_be))) |
(addr_hit[15] & (|(AES_PERMIT[15] & ~reg_be))) |
(addr_hit[16] & (|(AES_PERMIT[16] & ~reg_be))) |
(addr_hit[17] & (|(AES_PERMIT[17] & ~reg_be))) |
(addr_hit[18] & (|(AES_PERMIT[18] & ~reg_be))) |
(addr_hit[19] & (|(AES_PERMIT[19] & ~reg_be))) |
(addr_hit[20] & (|(AES_PERMIT[20] & ~reg_be))) |
(addr_hit[21] & (|(AES_PERMIT[21] & ~reg_be))) |
(addr_hit[22] & (|(AES_PERMIT[22] & ~reg_be))) |
(addr_hit[23] & (|(AES_PERMIT[23] & ~reg_be))) |
(addr_hit[24] & (|(AES_PERMIT[24] & ~reg_be))) |
(addr_hit[25] & (|(AES_PERMIT[25] & ~reg_be))) |
(addr_hit[26] & (|(AES_PERMIT[26] & ~reg_be))) |
(addr_hit[27] & (|(AES_PERMIT[27] & ~reg_be))) |
(addr_hit[28] & (|(AES_PERMIT[28] & ~reg_be))) |
(addr_hit[29] & (|(AES_PERMIT[29] & ~reg_be))) |
(addr_hit[30] & (|(AES_PERMIT[30] & ~reg_be))) |
(addr_hit[31] & (|(AES_PERMIT[31] & ~reg_be))) |
(addr_hit[32] & (|(AES_PERMIT[32] & ~reg_be))) |
(addr_hit[33] & (|(AES_PERMIT[33] & ~reg_be)))));
end
// Generate write-enables
assign alert_test_we = addr_hit[0] & reg_we & !reg_error;
assign alert_test_recov_ctrl_update_err_wd = reg_wdata[0];
assign alert_test_fatal_fault_wd = reg_wdata[1];
assign key_share0_0_we = addr_hit[1] & reg_we & !reg_error;
assign key_share0_0_wd = reg_wdata[31:0];
assign key_share0_1_we = addr_hit[2] & reg_we & !reg_error;
assign key_share0_1_wd = reg_wdata[31:0];
assign key_share0_2_we = addr_hit[3] & reg_we & !reg_error;
assign key_share0_2_wd = reg_wdata[31:0];
assign key_share0_3_we = addr_hit[4] & reg_we & !reg_error;
assign key_share0_3_wd = reg_wdata[31:0];
assign key_share0_4_we = addr_hit[5] & reg_we & !reg_error;
assign key_share0_4_wd = reg_wdata[31:0];
assign key_share0_5_we = addr_hit[6] & reg_we & !reg_error;
assign key_share0_5_wd = reg_wdata[31:0];
assign key_share0_6_we = addr_hit[7] & reg_we & !reg_error;
assign key_share0_6_wd = reg_wdata[31:0];
assign key_share0_7_we = addr_hit[8] & reg_we & !reg_error;
assign key_share0_7_wd = reg_wdata[31:0];
assign key_share1_0_we = addr_hit[9] & reg_we & !reg_error;
assign key_share1_0_wd = reg_wdata[31:0];
assign key_share1_1_we = addr_hit[10] & reg_we & !reg_error;
assign key_share1_1_wd = reg_wdata[31:0];
assign key_share1_2_we = addr_hit[11] & reg_we & !reg_error;
assign key_share1_2_wd = reg_wdata[31:0];
assign key_share1_3_we = addr_hit[12] & reg_we & !reg_error;
assign key_share1_3_wd = reg_wdata[31:0];
assign key_share1_4_we = addr_hit[13] & reg_we & !reg_error;
assign key_share1_4_wd = reg_wdata[31:0];
assign key_share1_5_we = addr_hit[14] & reg_we & !reg_error;
assign key_share1_5_wd = reg_wdata[31:0];
assign key_share1_6_we = addr_hit[15] & reg_we & !reg_error;
assign key_share1_6_wd = reg_wdata[31:0];
assign key_share1_7_we = addr_hit[16] & reg_we & !reg_error;
assign key_share1_7_wd = reg_wdata[31:0];
assign iv_0_re = addr_hit[17] & reg_re & !reg_error;
assign iv_0_we = addr_hit[17] & reg_we & !reg_error;
assign iv_0_wd = reg_wdata[31:0];
assign iv_1_re = addr_hit[18] & reg_re & !reg_error;
assign iv_1_we = addr_hit[18] & reg_we & !reg_error;
assign iv_1_wd = reg_wdata[31:0];
assign iv_2_re = addr_hit[19] & reg_re & !reg_error;
assign iv_2_we = addr_hit[19] & reg_we & !reg_error;
assign iv_2_wd = reg_wdata[31:0];
assign iv_3_re = addr_hit[20] & reg_re & !reg_error;
assign iv_3_we = addr_hit[20] & reg_we & !reg_error;
assign iv_3_wd = reg_wdata[31:0];
assign data_in_0_we = addr_hit[21] & reg_we & !reg_error;
assign data_in_0_wd = reg_wdata[31:0];
assign data_in_1_we = addr_hit[22] & reg_we & !reg_error;
assign data_in_1_wd = reg_wdata[31:0];
assign data_in_2_we = addr_hit[23] & reg_we & !reg_error;
assign data_in_2_wd = reg_wdata[31:0];
assign data_in_3_we = addr_hit[24] & reg_we & !reg_error;
assign data_in_3_wd = reg_wdata[31:0];
assign data_out_0_re = addr_hit[25] & reg_re & !reg_error;
assign data_out_1_re = addr_hit[26] & reg_re & !reg_error;
assign data_out_2_re = addr_hit[27] & reg_re & !reg_error;
assign data_out_3_re = addr_hit[28] & reg_re & !reg_error;
assign ctrl_shadowed_re = addr_hit[29] & reg_re & !reg_error;
assign ctrl_shadowed_we = addr_hit[29] & reg_we & !reg_error;
assign ctrl_shadowed_operation_wd = reg_wdata[1:0];
assign ctrl_shadowed_mode_wd = reg_wdata[7:2];
assign ctrl_shadowed_key_len_wd = reg_wdata[10:8];
assign ctrl_shadowed_sideload_wd = reg_wdata[11];
assign ctrl_shadowed_prng_reseed_rate_wd = reg_wdata[14:12];
assign ctrl_shadowed_manual_operation_wd = reg_wdata[15];
assign ctrl_aux_shadowed_re = addr_hit[30] & reg_re & !reg_error;
assign ctrl_aux_shadowed_we = addr_hit[30] & reg_we & !reg_error;
assign ctrl_aux_shadowed_key_touch_forces_reseed_wd = reg_wdata[0];
assign ctrl_aux_shadowed_force_masks_wd = reg_wdata[1];
assign ctrl_aux_regwen_we = addr_hit[31] & reg_we & !reg_error;
assign ctrl_aux_regwen_wd = reg_wdata[0];
assign trigger_we = addr_hit[32] & reg_we & !reg_error;
assign trigger_start_wd = reg_wdata[0];
assign trigger_key_iv_data_in_clear_wd = reg_wdata[1];
assign trigger_data_out_clear_wd = reg_wdata[2];
assign trigger_prng_reseed_wd = reg_wdata[3];
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = alert_test_we;
reg_we_check[1] = key_share0_0_we;
reg_we_check[2] = key_share0_1_we;
reg_we_check[3] = key_share0_2_we;
reg_we_check[4] = key_share0_3_we;
reg_we_check[5] = key_share0_4_we;
reg_we_check[6] = key_share0_5_we;
reg_we_check[7] = key_share0_6_we;
reg_we_check[8] = key_share0_7_we;
reg_we_check[9] = key_share1_0_we;
reg_we_check[10] = key_share1_1_we;
reg_we_check[11] = key_share1_2_we;
reg_we_check[12] = key_share1_3_we;
reg_we_check[13] = key_share1_4_we;
reg_we_check[14] = key_share1_5_we;
reg_we_check[15] = key_share1_6_we;
reg_we_check[16] = key_share1_7_we;
reg_we_check[17] = iv_0_we;
reg_we_check[18] = iv_1_we;
reg_we_check[19] = iv_2_we;
reg_we_check[20] = iv_3_we;
reg_we_check[21] = data_in_0_we;
reg_we_check[22] = data_in_1_we;
reg_we_check[23] = data_in_2_we;
reg_we_check[24] = data_in_3_we;
reg_we_check[25] = 1'b0;
reg_we_check[26] = 1'b0;
reg_we_check[27] = 1'b0;
reg_we_check[28] = 1'b0;
reg_we_check[29] = ctrl_shadowed_we;
reg_we_check[30] = ctrl_aux_shadowed_gated_we;
reg_we_check[31] = ctrl_aux_regwen_we;
reg_we_check[32] = trigger_we;
reg_we_check[33] = 1'b0;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[1]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[2]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[4]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[5]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[6]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[16]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[17]: begin
reg_rdata_next[31:0] = iv_0_qs;
end
addr_hit[18]: begin
reg_rdata_next[31:0] = iv_1_qs;
end
addr_hit[19]: begin
reg_rdata_next[31:0] = iv_2_qs;
end
addr_hit[20]: begin
reg_rdata_next[31:0] = iv_3_qs;
end
addr_hit[21]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[22]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[23]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[24]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[25]: begin
reg_rdata_next[31:0] = data_out_0_qs;
end
addr_hit[26]: begin
reg_rdata_next[31:0] = data_out_1_qs;
end
addr_hit[27]: begin
reg_rdata_next[31:0] = data_out_2_qs;
end
addr_hit[28]: begin
reg_rdata_next[31:0] = data_out_3_qs;
end
addr_hit[29]: begin
reg_rdata_next[1:0] = ctrl_shadowed_operation_qs;
reg_rdata_next[7:2] = ctrl_shadowed_mode_qs;
reg_rdata_next[10:8] = ctrl_shadowed_key_len_qs;
reg_rdata_next[11] = ctrl_shadowed_sideload_qs;
reg_rdata_next[14:12] = ctrl_shadowed_prng_reseed_rate_qs;
reg_rdata_next[15] = ctrl_shadowed_manual_operation_qs;
end
addr_hit[30]: begin
reg_rdata_next[0] = ctrl_aux_shadowed_key_touch_forces_reseed_qs;
reg_rdata_next[1] = ctrl_aux_shadowed_force_masks_qs;
end
addr_hit[31]: begin
reg_rdata_next[0] = ctrl_aux_regwen_qs;
end
addr_hit[32]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
reg_rdata_next[3] = '0;
end
addr_hit[33]: begin
reg_rdata_next[0] = status_idle_qs;
reg_rdata_next[1] = status_stall_qs;
reg_rdata_next[2] = status_output_lost_qs;
reg_rdata_next[3] = status_output_valid_qs;
reg_rdata_next[4] = status_input_ready_qs;
reg_rdata_next[5] = status_alert_recov_ctrl_update_err_qs;
reg_rdata_next[6] = status_alert_fatal_fault_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
logic rst_done;
logic shadow_rst_done;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
rst_done <= '0;
end else begin
rst_done <= 1'b1;
end
end
always_ff @(posedge clk_i or negedge rst_shadowed_ni) begin
if (!rst_shadowed_ni) begin
shadow_rst_done <= '0;
end else begin
shadow_rst_done <= 1'b1;
end
end
// both shadow and normal resets have been released
assign shadow_busy = ~(rst_done & shadow_rst_done);
// Collect up storage and update errors
assign shadowed_storage_err_o = |{
ctrl_aux_shadowed_key_touch_forces_reseed_storage_err,
ctrl_aux_shadowed_force_masks_storage_err
};
assign shadowed_update_err_o = |{
ctrl_aux_shadowed_key_touch_forces_reseed_update_err,
ctrl_aux_shadowed_force_masks_update_err
};
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule