blob: f1e2db9420028b9232bc7a0a99c27dd4a695bf05 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
module aes_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output aes_reg_pkg::aes_reg2hw_t reg2hw, // Write
input aes_reg_pkg::aes_hw2reg_t hw2reg, // Read
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import aes_reg_pkg::* ;
localparam AW = 7;
localparam DW = 32;
localparam DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
assign tl_reg_h2d = tl_i;
assign tl_o = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err ;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic [31:0] key0_wd;
logic key0_we;
logic [31:0] key1_wd;
logic key1_we;
logic [31:0] key2_wd;
logic key2_we;
logic [31:0] key3_wd;
logic key3_we;
logic [31:0] key4_wd;
logic key4_we;
logic [31:0] key5_wd;
logic key5_we;
logic [31:0] key6_wd;
logic key6_we;
logic [31:0] key7_wd;
logic key7_we;
logic [31:0] data_in0_wd;
logic data_in0_we;
logic [31:0] data_in1_wd;
logic data_in1_we;
logic [31:0] data_in2_wd;
logic data_in2_we;
logic [31:0] data_in3_wd;
logic data_in3_we;
logic [31:0] data_out0_qs;
logic data_out0_re;
logic [31:0] data_out1_qs;
logic data_out1_re;
logic [31:0] data_out2_qs;
logic data_out2_re;
logic [31:0] data_out3_qs;
logic data_out3_re;
logic ctrl_mode_qs;
logic ctrl_mode_wd;
logic ctrl_mode_we;
logic [2:0] ctrl_key_len_qs;
logic [2:0] ctrl_key_len_wd;
logic ctrl_key_len_we;
logic ctrl_manual_start_trigger_qs;
logic ctrl_manual_start_trigger_wd;
logic ctrl_manual_start_trigger_we;
logic ctrl_force_data_overwrite_qs;
logic ctrl_force_data_overwrite_wd;
logic ctrl_force_data_overwrite_we;
logic trigger_qs;
logic trigger_wd;
logic trigger_we;
logic status_idle_qs;
logic status_stall_qs;
logic status_output_valid_qs;
logic status_input_ready_qs;
// Register instances
// Subregister 0 of Multireg key
// R[key0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key0_we),
.wd (key0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[0].qe),
.q (reg2hw.key[0].q ),
.qs ()
);
// Subregister 1 of Multireg key
// R[key1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key1_we),
.wd (key1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[1].qe),
.q (reg2hw.key[1].q ),
.qs ()
);
// Subregister 2 of Multireg key
// R[key2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key2_we),
.wd (key2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[2].qe),
.q (reg2hw.key[2].q ),
.qs ()
);
// Subregister 3 of Multireg key
// R[key3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key3_we),
.wd (key3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[3].qe),
.q (reg2hw.key[3].q ),
.qs ()
);
// Subregister 4 of Multireg key
// R[key4]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key4_we),
.wd (key4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[4].qe),
.q (reg2hw.key[4].q ),
.qs ()
);
// Subregister 5 of Multireg key
// R[key5]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key5_we),
.wd (key5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[5].qe),
.q (reg2hw.key[5].q ),
.qs ()
);
// Subregister 6 of Multireg key
// R[key6]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key6 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key6_we),
.wd (key6_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[6].qe),
.q (reg2hw.key[6].q ),
.qs ()
);
// Subregister 7 of Multireg key
// R[key7]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_key7 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (key7_we),
.wd (key7_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.key[7].qe),
.q (reg2hw.key[7].q ),
.qs ()
);
// Subregister 0 of Multireg data_in
// R[data_in0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_data_in0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_in0_we),
.wd (data_in0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.data_in[0].qe),
.q (reg2hw.data_in[0].q ),
.qs ()
);
// Subregister 1 of Multireg data_in
// R[data_in1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_data_in1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_in1_we),
.wd (data_in1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.data_in[1].qe),
.q (reg2hw.data_in[1].q ),
.qs ()
);
// Subregister 2 of Multireg data_in
// R[data_in2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_data_in2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_in2_we),
.wd (data_in2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.data_in[2].qe),
.q (reg2hw.data_in[2].q ),
.qs ()
);
// Subregister 3 of Multireg data_in
// R[data_in3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_data_in3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (data_in3_we),
.wd (data_in3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.data_in[3].qe),
.q (reg2hw.data_in[3].q ),
.qs ()
);
// Subregister 0 of Multireg data_out
// R[data_out0]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out0 (
.re (data_out0_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[0].d),
.qre (reg2hw.data_out[0].re),
.qe (),
.q (reg2hw.data_out[0].q ),
.qs (data_out0_qs)
);
// Subregister 1 of Multireg data_out
// R[data_out1]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out1 (
.re (data_out1_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[1].d),
.qre (reg2hw.data_out[1].re),
.qe (),
.q (reg2hw.data_out[1].q ),
.qs (data_out1_qs)
);
// Subregister 2 of Multireg data_out
// R[data_out2]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out2 (
.re (data_out2_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[2].d),
.qre (reg2hw.data_out[2].re),
.qe (),
.q (reg2hw.data_out[2].q ),
.qs (data_out2_qs)
);
// Subregister 3 of Multireg data_out
// R[data_out3]: V(True)
prim_subreg_ext #(
.DW (32)
) u_data_out3 (
.re (data_out3_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.data_out[3].d),
.qre (reg2hw.data_out[3].re),
.qe (),
.q (reg2hw.data_out[3].q ),
.qs (data_out3_qs)
);
// R[ctrl]: V(False)
// F[mode]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_mode (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_mode_we),
.wd (ctrl_mode_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.ctrl.mode.qe),
.q (reg2hw.ctrl.mode.q ),
// to register interface (read)
.qs (ctrl_mode_qs)
);
// F[key_len]: 3:1
prim_subreg #(
.DW (3),
.SWACCESS("RW"),
.RESVAL (3'h1)
) u_ctrl_key_len (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_key_len_we),
.wd (ctrl_key_len_wd),
// from internal hardware
.de (hw2reg.ctrl.key_len.de),
.d (hw2reg.ctrl.key_len.d ),
// to internal hardware
.qe (reg2hw.ctrl.key_len.qe),
.q (reg2hw.ctrl.key_len.q ),
// to register interface (read)
.qs (ctrl_key_len_qs)
);
// F[manual_start_trigger]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_manual_start_trigger (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_manual_start_trigger_we),
.wd (ctrl_manual_start_trigger_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.ctrl.manual_start_trigger.qe),
.q (reg2hw.ctrl.manual_start_trigger.q ),
// to register interface (read)
.qs (ctrl_manual_start_trigger_qs)
);
// F[force_data_overwrite]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_force_data_overwrite (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (ctrl_force_data_overwrite_we),
.wd (ctrl_force_data_overwrite_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.ctrl.force_data_overwrite.qe),
.q (reg2hw.ctrl.force_data_overwrite.q ),
// to register interface (read)
.qs (ctrl_force_data_overwrite_qs)
);
// R[trigger]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_trigger (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (trigger_we),
.wd (trigger_wd),
// from internal hardware
.de (hw2reg.trigger.de),
.d (hw2reg.trigger.d ),
// to internal hardware
.qe (),
.q (reg2hw.trigger.q ),
// to register interface (read)
.qs (trigger_qs)
);
// R[status]: V(False)
// F[idle]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_status_idle (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.status.idle.de),
.d (hw2reg.status.idle.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (status_idle_qs)
);
// F[stall]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_status_stall (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.status.stall.de),
.d (hw2reg.status.stall.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (status_stall_qs)
);
// F[output_valid]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_status_output_valid (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.status.output_valid.de),
.d (hw2reg.status.output_valid.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (status_output_valid_qs)
);
// F[input_ready]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h1)
) u_status_input_ready (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.status.input_ready.de),
.d (hw2reg.status.input_ready.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (status_input_ready_qs)
);
logic [18:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == AES_KEY0_OFFSET);
addr_hit[ 1] = (reg_addr == AES_KEY1_OFFSET);
addr_hit[ 2] = (reg_addr == AES_KEY2_OFFSET);
addr_hit[ 3] = (reg_addr == AES_KEY3_OFFSET);
addr_hit[ 4] = (reg_addr == AES_KEY4_OFFSET);
addr_hit[ 5] = (reg_addr == AES_KEY5_OFFSET);
addr_hit[ 6] = (reg_addr == AES_KEY6_OFFSET);
addr_hit[ 7] = (reg_addr == AES_KEY7_OFFSET);
addr_hit[ 8] = (reg_addr == AES_DATA_IN0_OFFSET);
addr_hit[ 9] = (reg_addr == AES_DATA_IN1_OFFSET);
addr_hit[10] = (reg_addr == AES_DATA_IN2_OFFSET);
addr_hit[11] = (reg_addr == AES_DATA_IN3_OFFSET);
addr_hit[12] = (reg_addr == AES_DATA_OUT0_OFFSET);
addr_hit[13] = (reg_addr == AES_DATA_OUT1_OFFSET);
addr_hit[14] = (reg_addr == AES_DATA_OUT2_OFFSET);
addr_hit[15] = (reg_addr == AES_DATA_OUT3_OFFSET);
addr_hit[16] = (reg_addr == AES_CTRL_OFFSET);
addr_hit[17] = (reg_addr == AES_TRIGGER_OFFSET);
addr_hit[18] = (reg_addr == AES_STATUS_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (AES_PERMIT[ 0] != (AES_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (AES_PERMIT[ 1] != (AES_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (AES_PERMIT[ 2] != (AES_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (AES_PERMIT[ 3] != (AES_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (AES_PERMIT[ 4] != (AES_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (AES_PERMIT[ 5] != (AES_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (AES_PERMIT[ 6] != (AES_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (AES_PERMIT[ 7] != (AES_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (AES_PERMIT[ 8] != (AES_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (AES_PERMIT[ 9] != (AES_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (AES_PERMIT[10] != (AES_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[11] && reg_we && (AES_PERMIT[11] != (AES_PERMIT[11] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[12] && reg_we && (AES_PERMIT[12] != (AES_PERMIT[12] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[13] && reg_we && (AES_PERMIT[13] != (AES_PERMIT[13] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[14] && reg_we && (AES_PERMIT[14] != (AES_PERMIT[14] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[15] && reg_we && (AES_PERMIT[15] != (AES_PERMIT[15] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[16] && reg_we && (AES_PERMIT[16] != (AES_PERMIT[16] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[17] && reg_we && (AES_PERMIT[17] != (AES_PERMIT[17] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[18] && reg_we && (AES_PERMIT[18] != (AES_PERMIT[18] & reg_be))) wr_err = 1'b1 ;
end
assign key0_we = addr_hit[0] & reg_we & ~wr_err;
assign key0_wd = reg_wdata[31:0];
assign key1_we = addr_hit[1] & reg_we & ~wr_err;
assign key1_wd = reg_wdata[31:0];
assign key2_we = addr_hit[2] & reg_we & ~wr_err;
assign key2_wd = reg_wdata[31:0];
assign key3_we = addr_hit[3] & reg_we & ~wr_err;
assign key3_wd = reg_wdata[31:0];
assign key4_we = addr_hit[4] & reg_we & ~wr_err;
assign key4_wd = reg_wdata[31:0];
assign key5_we = addr_hit[5] & reg_we & ~wr_err;
assign key5_wd = reg_wdata[31:0];
assign key6_we = addr_hit[6] & reg_we & ~wr_err;
assign key6_wd = reg_wdata[31:0];
assign key7_we = addr_hit[7] & reg_we & ~wr_err;
assign key7_wd = reg_wdata[31:0];
assign data_in0_we = addr_hit[8] & reg_we & ~wr_err;
assign data_in0_wd = reg_wdata[31:0];
assign data_in1_we = addr_hit[9] & reg_we & ~wr_err;
assign data_in1_wd = reg_wdata[31:0];
assign data_in2_we = addr_hit[10] & reg_we & ~wr_err;
assign data_in2_wd = reg_wdata[31:0];
assign data_in3_we = addr_hit[11] & reg_we & ~wr_err;
assign data_in3_wd = reg_wdata[31:0];
assign data_out0_re = addr_hit[12] && reg_re;
assign data_out1_re = addr_hit[13] && reg_re;
assign data_out2_re = addr_hit[14] && reg_re;
assign data_out3_re = addr_hit[15] && reg_re;
assign ctrl_mode_we = addr_hit[16] & reg_we & ~wr_err;
assign ctrl_mode_wd = reg_wdata[0];
assign ctrl_key_len_we = addr_hit[16] & reg_we & ~wr_err;
assign ctrl_key_len_wd = reg_wdata[3:1];
assign ctrl_manual_start_trigger_we = addr_hit[16] & reg_we & ~wr_err;
assign ctrl_manual_start_trigger_wd = reg_wdata[4];
assign ctrl_force_data_overwrite_we = addr_hit[16] & reg_we & ~wr_err;
assign ctrl_force_data_overwrite_wd = reg_wdata[5];
assign trigger_we = addr_hit[17] & reg_we & ~wr_err;
assign trigger_wd = reg_wdata[0];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[1]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[2]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[4]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[5]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[6]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = data_out0_qs;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = data_out1_qs;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = data_out2_qs;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = data_out3_qs;
end
addr_hit[16]: begin
reg_rdata_next[0] = ctrl_mode_qs;
reg_rdata_next[3:1] = ctrl_key_len_qs;
reg_rdata_next[4] = ctrl_manual_start_trigger_qs;
reg_rdata_next[5] = ctrl_force_data_overwrite_qs;
end
addr_hit[17]: begin
reg_rdata_next[0] = trigger_qs;
end
addr_hit[18]: begin
reg_rdata_next[0] = status_idle_qs;
reg_rdata_next[1] = status_stall_qs;
reg_rdata_next[2] = status_output_valid_qs;
reg_rdata_next[3] = status_input_ready_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
`ASSERT(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0, clk_i, !rst_ni)
endmodule