| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // Register Top module auto-generated by `reggen` |
| |
| module aes_reg_top ( |
| input clk_i, |
| input rst_ni, |
| |
| // Below Regster interface can be changed |
| input tlul_pkg::tl_h2d_t tl_i, |
| output tlul_pkg::tl_d2h_t tl_o, |
| // To HW |
| output aes_reg_pkg::aes_reg2hw_t reg2hw, // Write |
| input aes_reg_pkg::aes_hw2reg_t hw2reg, // Read |
| |
| // Config |
| input devmode_i // If 1, explicit error return for unmapped register access |
| ); |
| |
| import aes_reg_pkg::* ; |
| |
| localparam AW = 7; |
| localparam DW = 32; |
| localparam DBW = DW/8; // Byte Width |
| |
| // register signals |
| logic reg_we; |
| logic reg_re; |
| logic [AW-1:0] reg_addr; |
| logic [DW-1:0] reg_wdata; |
| logic [DBW-1:0] reg_be; |
| logic [DW-1:0] reg_rdata; |
| logic reg_error; |
| |
| logic addrmiss, wr_err; |
| |
| logic [DW-1:0] reg_rdata_next; |
| |
| tlul_pkg::tl_h2d_t tl_reg_h2d; |
| tlul_pkg::tl_d2h_t tl_reg_d2h; |
| |
| assign tl_reg_h2d = tl_i; |
| assign tl_o = tl_reg_d2h; |
| |
| tlul_adapter_reg #( |
| .RegAw(AW), |
| .RegDw(DW) |
| ) u_reg_if ( |
| .clk_i, |
| .rst_ni, |
| |
| .tl_i (tl_reg_h2d), |
| .tl_o (tl_reg_d2h), |
| |
| .we_o (reg_we), |
| .re_o (reg_re), |
| .addr_o (reg_addr), |
| .wdata_o (reg_wdata), |
| .be_o (reg_be), |
| .rdata_i (reg_rdata), |
| .error_i (reg_error) |
| ); |
| |
| assign reg_rdata = reg_rdata_next ; |
| assign reg_error = (devmode_i & addrmiss) | wr_err ; |
| |
| // Define SW related signals |
| // Format: <reg>_<field>_{wd|we|qs} |
| // or <reg>_{wd|we|qs} if field == 1 or 0 |
| logic [31:0] key0_wd; |
| logic key0_we; |
| logic [31:0] key1_wd; |
| logic key1_we; |
| logic [31:0] key2_wd; |
| logic key2_we; |
| logic [31:0] key3_wd; |
| logic key3_we; |
| logic [31:0] key4_wd; |
| logic key4_we; |
| logic [31:0] key5_wd; |
| logic key5_we; |
| logic [31:0] key6_wd; |
| logic key6_we; |
| logic [31:0] key7_wd; |
| logic key7_we; |
| logic [31:0] data_in0_wd; |
| logic data_in0_we; |
| logic [31:0] data_in1_wd; |
| logic data_in1_we; |
| logic [31:0] data_in2_wd; |
| logic data_in2_we; |
| logic [31:0] data_in3_wd; |
| logic data_in3_we; |
| logic [31:0] data_out0_qs; |
| logic data_out0_re; |
| logic [31:0] data_out1_qs; |
| logic data_out1_re; |
| logic [31:0] data_out2_qs; |
| logic data_out2_re; |
| logic [31:0] data_out3_qs; |
| logic data_out3_re; |
| logic ctrl_mode_qs; |
| logic ctrl_mode_wd; |
| logic ctrl_mode_we; |
| logic [2:0] ctrl_key_len_qs; |
| logic [2:0] ctrl_key_len_wd; |
| logic ctrl_key_len_we; |
| logic ctrl_manual_start_trigger_qs; |
| logic ctrl_manual_start_trigger_wd; |
| logic ctrl_manual_start_trigger_we; |
| logic ctrl_force_data_overwrite_qs; |
| logic ctrl_force_data_overwrite_wd; |
| logic ctrl_force_data_overwrite_we; |
| logic trigger_qs; |
| logic trigger_wd; |
| logic trigger_we; |
| logic status_idle_qs; |
| logic status_stall_qs; |
| logic status_output_valid_qs; |
| logic status_input_ready_qs; |
| |
| // Register instances |
| |
| // Subregister 0 of Multireg key |
| // R[key0]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key0 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key0_we), |
| .wd (key0_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[0].qe), |
| .q (reg2hw.key[0].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 1 of Multireg key |
| // R[key1]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key1 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key1_we), |
| .wd (key1_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[1].qe), |
| .q (reg2hw.key[1].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 2 of Multireg key |
| // R[key2]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key2 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key2_we), |
| .wd (key2_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[2].qe), |
| .q (reg2hw.key[2].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 3 of Multireg key |
| // R[key3]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key3 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key3_we), |
| .wd (key3_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[3].qe), |
| .q (reg2hw.key[3].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 4 of Multireg key |
| // R[key4]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key4 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key4_we), |
| .wd (key4_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[4].qe), |
| .q (reg2hw.key[4].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 5 of Multireg key |
| // R[key5]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key5 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key5_we), |
| .wd (key5_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[5].qe), |
| .q (reg2hw.key[5].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 6 of Multireg key |
| // R[key6]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key6 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key6_we), |
| .wd (key6_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[6].qe), |
| .q (reg2hw.key[6].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 7 of Multireg key |
| // R[key7]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_key7 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (key7_we), |
| .wd (key7_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.key[7].qe), |
| .q (reg2hw.key[7].q ), |
| |
| .qs () |
| ); |
| |
| |
| |
| // Subregister 0 of Multireg data_in |
| // R[data_in0]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_data_in0 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (data_in0_we), |
| .wd (data_in0_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.data_in[0].qe), |
| .q (reg2hw.data_in[0].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 1 of Multireg data_in |
| // R[data_in1]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_data_in1 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (data_in1_we), |
| .wd (data_in1_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.data_in[1].qe), |
| .q (reg2hw.data_in[1].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 2 of Multireg data_in |
| // R[data_in2]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_data_in2 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (data_in2_we), |
| .wd (data_in2_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.data_in[2].qe), |
| .q (reg2hw.data_in[2].q ), |
| |
| .qs () |
| ); |
| |
| // Subregister 3 of Multireg data_in |
| // R[data_in3]: V(False) |
| |
| prim_subreg #( |
| .DW (32), |
| .SWACCESS("WO"), |
| .RESVAL (32'h0) |
| ) u_data_in3 ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (data_in3_we), |
| .wd (data_in3_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.data_in[3].qe), |
| .q (reg2hw.data_in[3].q ), |
| |
| .qs () |
| ); |
| |
| |
| |
| // Subregister 0 of Multireg data_out |
| // R[data_out0]: V(True) |
| |
| prim_subreg_ext #( |
| .DW (32) |
| ) u_data_out0 ( |
| .re (data_out0_re), |
| .we (1'b0), |
| .wd ('0), |
| .d (hw2reg.data_out[0].d), |
| .qre (reg2hw.data_out[0].re), |
| .qe (), |
| .q (reg2hw.data_out[0].q ), |
| .qs (data_out0_qs) |
| ); |
| |
| // Subregister 1 of Multireg data_out |
| // R[data_out1]: V(True) |
| |
| prim_subreg_ext #( |
| .DW (32) |
| ) u_data_out1 ( |
| .re (data_out1_re), |
| .we (1'b0), |
| .wd ('0), |
| .d (hw2reg.data_out[1].d), |
| .qre (reg2hw.data_out[1].re), |
| .qe (), |
| .q (reg2hw.data_out[1].q ), |
| .qs (data_out1_qs) |
| ); |
| |
| // Subregister 2 of Multireg data_out |
| // R[data_out2]: V(True) |
| |
| prim_subreg_ext #( |
| .DW (32) |
| ) u_data_out2 ( |
| .re (data_out2_re), |
| .we (1'b0), |
| .wd ('0), |
| .d (hw2reg.data_out[2].d), |
| .qre (reg2hw.data_out[2].re), |
| .qe (), |
| .q (reg2hw.data_out[2].q ), |
| .qs (data_out2_qs) |
| ); |
| |
| // Subregister 3 of Multireg data_out |
| // R[data_out3]: V(True) |
| |
| prim_subreg_ext #( |
| .DW (32) |
| ) u_data_out3 ( |
| .re (data_out3_re), |
| .we (1'b0), |
| .wd ('0), |
| .d (hw2reg.data_out[3].d), |
| .qre (reg2hw.data_out[3].re), |
| .qe (), |
| .q (reg2hw.data_out[3].q ), |
| .qs (data_out3_qs) |
| ); |
| |
| |
| // R[ctrl]: V(False) |
| |
| // F[mode]: 0:0 |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RW"), |
| .RESVAL (1'h0) |
| ) u_ctrl_mode ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (ctrl_mode_we), |
| .wd (ctrl_mode_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.ctrl.mode.qe), |
| .q (reg2hw.ctrl.mode.q ), |
| |
| // to register interface (read) |
| .qs (ctrl_mode_qs) |
| ); |
| |
| |
| // F[key_len]: 3:1 |
| prim_subreg #( |
| .DW (3), |
| .SWACCESS("RW"), |
| .RESVAL (3'h1) |
| ) u_ctrl_key_len ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (ctrl_key_len_we), |
| .wd (ctrl_key_len_wd), |
| |
| // from internal hardware |
| .de (hw2reg.ctrl.key_len.de), |
| .d (hw2reg.ctrl.key_len.d ), |
| |
| // to internal hardware |
| .qe (reg2hw.ctrl.key_len.qe), |
| .q (reg2hw.ctrl.key_len.q ), |
| |
| // to register interface (read) |
| .qs (ctrl_key_len_qs) |
| ); |
| |
| |
| // F[manual_start_trigger]: 4:4 |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RW"), |
| .RESVAL (1'h0) |
| ) u_ctrl_manual_start_trigger ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (ctrl_manual_start_trigger_we), |
| .wd (ctrl_manual_start_trigger_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.ctrl.manual_start_trigger.qe), |
| .q (reg2hw.ctrl.manual_start_trigger.q ), |
| |
| // to register interface (read) |
| .qs (ctrl_manual_start_trigger_qs) |
| ); |
| |
| |
| // F[force_data_overwrite]: 5:5 |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RW"), |
| .RESVAL (1'h0) |
| ) u_ctrl_force_data_overwrite ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (ctrl_force_data_overwrite_we), |
| .wd (ctrl_force_data_overwrite_wd), |
| |
| // from internal hardware |
| .de (1'b0), |
| .d ('0 ), |
| |
| // to internal hardware |
| .qe (reg2hw.ctrl.force_data_overwrite.qe), |
| .q (reg2hw.ctrl.force_data_overwrite.q ), |
| |
| // to register interface (read) |
| .qs (ctrl_force_data_overwrite_qs) |
| ); |
| |
| |
| // R[trigger]: V(False) |
| |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RW"), |
| .RESVAL (1'h0) |
| ) u_trigger ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| // from register interface |
| .we (trigger_we), |
| .wd (trigger_wd), |
| |
| // from internal hardware |
| .de (hw2reg.trigger.de), |
| .d (hw2reg.trigger.d ), |
| |
| // to internal hardware |
| .qe (), |
| .q (reg2hw.trigger.q ), |
| |
| // to register interface (read) |
| .qs (trigger_qs) |
| ); |
| |
| |
| // R[status]: V(False) |
| |
| // F[idle]: 0:0 |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RO"), |
| .RESVAL (1'h0) |
| ) u_status_idle ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| .we (1'b0), |
| .wd ('0 ), |
| |
| // from internal hardware |
| .de (hw2reg.status.idle.de), |
| .d (hw2reg.status.idle.d ), |
| |
| // to internal hardware |
| .qe (), |
| .q (), |
| |
| // to register interface (read) |
| .qs (status_idle_qs) |
| ); |
| |
| |
| // F[stall]: 1:1 |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RO"), |
| .RESVAL (1'h0) |
| ) u_status_stall ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| .we (1'b0), |
| .wd ('0 ), |
| |
| // from internal hardware |
| .de (hw2reg.status.stall.de), |
| .d (hw2reg.status.stall.d ), |
| |
| // to internal hardware |
| .qe (), |
| .q (), |
| |
| // to register interface (read) |
| .qs (status_stall_qs) |
| ); |
| |
| |
| // F[output_valid]: 2:2 |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RO"), |
| .RESVAL (1'h0) |
| ) u_status_output_valid ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| .we (1'b0), |
| .wd ('0 ), |
| |
| // from internal hardware |
| .de (hw2reg.status.output_valid.de), |
| .d (hw2reg.status.output_valid.d ), |
| |
| // to internal hardware |
| .qe (), |
| .q (), |
| |
| // to register interface (read) |
| .qs (status_output_valid_qs) |
| ); |
| |
| |
| // F[input_ready]: 3:3 |
| prim_subreg #( |
| .DW (1), |
| .SWACCESS("RO"), |
| .RESVAL (1'h1) |
| ) u_status_input_ready ( |
| .clk_i (clk_i ), |
| .rst_ni (rst_ni ), |
| |
| .we (1'b0), |
| .wd ('0 ), |
| |
| // from internal hardware |
| .de (hw2reg.status.input_ready.de), |
| .d (hw2reg.status.input_ready.d ), |
| |
| // to internal hardware |
| .qe (), |
| .q (), |
| |
| // to register interface (read) |
| .qs (status_input_ready_qs) |
| ); |
| |
| |
| |
| |
| logic [18:0] addr_hit; |
| always_comb begin |
| addr_hit = '0; |
| addr_hit[ 0] = (reg_addr == AES_KEY0_OFFSET); |
| addr_hit[ 1] = (reg_addr == AES_KEY1_OFFSET); |
| addr_hit[ 2] = (reg_addr == AES_KEY2_OFFSET); |
| addr_hit[ 3] = (reg_addr == AES_KEY3_OFFSET); |
| addr_hit[ 4] = (reg_addr == AES_KEY4_OFFSET); |
| addr_hit[ 5] = (reg_addr == AES_KEY5_OFFSET); |
| addr_hit[ 6] = (reg_addr == AES_KEY6_OFFSET); |
| addr_hit[ 7] = (reg_addr == AES_KEY7_OFFSET); |
| addr_hit[ 8] = (reg_addr == AES_DATA_IN0_OFFSET); |
| addr_hit[ 9] = (reg_addr == AES_DATA_IN1_OFFSET); |
| addr_hit[10] = (reg_addr == AES_DATA_IN2_OFFSET); |
| addr_hit[11] = (reg_addr == AES_DATA_IN3_OFFSET); |
| addr_hit[12] = (reg_addr == AES_DATA_OUT0_OFFSET); |
| addr_hit[13] = (reg_addr == AES_DATA_OUT1_OFFSET); |
| addr_hit[14] = (reg_addr == AES_DATA_OUT2_OFFSET); |
| addr_hit[15] = (reg_addr == AES_DATA_OUT3_OFFSET); |
| addr_hit[16] = (reg_addr == AES_CTRL_OFFSET); |
| addr_hit[17] = (reg_addr == AES_TRIGGER_OFFSET); |
| addr_hit[18] = (reg_addr == AES_STATUS_OFFSET); |
| end |
| |
| assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ; |
| |
| // Check sub-word write is permitted |
| always_comb begin |
| wr_err = 1'b0; |
| if (addr_hit[ 0] && reg_we && (AES_PERMIT[ 0] != (AES_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 1] && reg_we && (AES_PERMIT[ 1] != (AES_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 2] && reg_we && (AES_PERMIT[ 2] != (AES_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 3] && reg_we && (AES_PERMIT[ 3] != (AES_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 4] && reg_we && (AES_PERMIT[ 4] != (AES_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 5] && reg_we && (AES_PERMIT[ 5] != (AES_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 6] && reg_we && (AES_PERMIT[ 6] != (AES_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 7] && reg_we && (AES_PERMIT[ 7] != (AES_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 8] && reg_we && (AES_PERMIT[ 8] != (AES_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[ 9] && reg_we && (AES_PERMIT[ 9] != (AES_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[10] && reg_we && (AES_PERMIT[10] != (AES_PERMIT[10] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[11] && reg_we && (AES_PERMIT[11] != (AES_PERMIT[11] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[12] && reg_we && (AES_PERMIT[12] != (AES_PERMIT[12] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[13] && reg_we && (AES_PERMIT[13] != (AES_PERMIT[13] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[14] && reg_we && (AES_PERMIT[14] != (AES_PERMIT[14] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[15] && reg_we && (AES_PERMIT[15] != (AES_PERMIT[15] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[16] && reg_we && (AES_PERMIT[16] != (AES_PERMIT[16] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[17] && reg_we && (AES_PERMIT[17] != (AES_PERMIT[17] & reg_be))) wr_err = 1'b1 ; |
| if (addr_hit[18] && reg_we && (AES_PERMIT[18] != (AES_PERMIT[18] & reg_be))) wr_err = 1'b1 ; |
| end |
| |
| assign key0_we = addr_hit[0] & reg_we & ~wr_err; |
| assign key0_wd = reg_wdata[31:0]; |
| |
| assign key1_we = addr_hit[1] & reg_we & ~wr_err; |
| assign key1_wd = reg_wdata[31:0]; |
| |
| assign key2_we = addr_hit[2] & reg_we & ~wr_err; |
| assign key2_wd = reg_wdata[31:0]; |
| |
| assign key3_we = addr_hit[3] & reg_we & ~wr_err; |
| assign key3_wd = reg_wdata[31:0]; |
| |
| assign key4_we = addr_hit[4] & reg_we & ~wr_err; |
| assign key4_wd = reg_wdata[31:0]; |
| |
| assign key5_we = addr_hit[5] & reg_we & ~wr_err; |
| assign key5_wd = reg_wdata[31:0]; |
| |
| assign key6_we = addr_hit[6] & reg_we & ~wr_err; |
| assign key6_wd = reg_wdata[31:0]; |
| |
| assign key7_we = addr_hit[7] & reg_we & ~wr_err; |
| assign key7_wd = reg_wdata[31:0]; |
| |
| assign data_in0_we = addr_hit[8] & reg_we & ~wr_err; |
| assign data_in0_wd = reg_wdata[31:0]; |
| |
| assign data_in1_we = addr_hit[9] & reg_we & ~wr_err; |
| assign data_in1_wd = reg_wdata[31:0]; |
| |
| assign data_in2_we = addr_hit[10] & reg_we & ~wr_err; |
| assign data_in2_wd = reg_wdata[31:0]; |
| |
| assign data_in3_we = addr_hit[11] & reg_we & ~wr_err; |
| assign data_in3_wd = reg_wdata[31:0]; |
| |
| assign data_out0_re = addr_hit[12] && reg_re; |
| |
| assign data_out1_re = addr_hit[13] && reg_re; |
| |
| assign data_out2_re = addr_hit[14] && reg_re; |
| |
| assign data_out3_re = addr_hit[15] && reg_re; |
| |
| assign ctrl_mode_we = addr_hit[16] & reg_we & ~wr_err; |
| assign ctrl_mode_wd = reg_wdata[0]; |
| |
| assign ctrl_key_len_we = addr_hit[16] & reg_we & ~wr_err; |
| assign ctrl_key_len_wd = reg_wdata[3:1]; |
| |
| assign ctrl_manual_start_trigger_we = addr_hit[16] & reg_we & ~wr_err; |
| assign ctrl_manual_start_trigger_wd = reg_wdata[4]; |
| |
| assign ctrl_force_data_overwrite_we = addr_hit[16] & reg_we & ~wr_err; |
| assign ctrl_force_data_overwrite_wd = reg_wdata[5]; |
| |
| assign trigger_we = addr_hit[17] & reg_we & ~wr_err; |
| assign trigger_wd = reg_wdata[0]; |
| |
| |
| |
| |
| |
| // Read data return |
| always_comb begin |
| reg_rdata_next = '0; |
| unique case (1'b1) |
| addr_hit[0]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[1]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[2]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[3]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[4]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[5]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[6]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[7]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[8]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[9]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[10]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[11]: begin |
| reg_rdata_next[31:0] = '0; |
| end |
| |
| addr_hit[12]: begin |
| reg_rdata_next[31:0] = data_out0_qs; |
| end |
| |
| addr_hit[13]: begin |
| reg_rdata_next[31:0] = data_out1_qs; |
| end |
| |
| addr_hit[14]: begin |
| reg_rdata_next[31:0] = data_out2_qs; |
| end |
| |
| addr_hit[15]: begin |
| reg_rdata_next[31:0] = data_out3_qs; |
| end |
| |
| addr_hit[16]: begin |
| reg_rdata_next[0] = ctrl_mode_qs; |
| reg_rdata_next[3:1] = ctrl_key_len_qs; |
| reg_rdata_next[4] = ctrl_manual_start_trigger_qs; |
| reg_rdata_next[5] = ctrl_force_data_overwrite_qs; |
| end |
| |
| addr_hit[17]: begin |
| reg_rdata_next[0] = trigger_qs; |
| end |
| |
| addr_hit[18]: begin |
| reg_rdata_next[0] = status_idle_qs; |
| reg_rdata_next[1] = status_stall_qs; |
| reg_rdata_next[2] = status_output_valid_qs; |
| reg_rdata_next[3] = status_input_ready_qs; |
| end |
| |
| default: begin |
| reg_rdata_next = '1; |
| end |
| endcase |
| end |
| |
| // Assertions for Register Interface |
| `ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni) |
| `ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni) |
| |
| `ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid, clk_i, !rst_ni) |
| |
| `ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni) |
| |
| `ASSERT(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0, clk_i, !rst_ni) |
| |
| endmodule |