| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| #include "sw/device/silicon_creator/lib/shutdown.h" |
| |
| #include <assert.h> |
| |
| #include "sw/device/lib/arch/device.h" |
| #include "sw/device/lib/base/abs_mmio.h" |
| #include "sw/device/lib/base/bitfield.h" |
| #include "sw/device/lib/base/csr.h" |
| #include "sw/device/lib/base/hardened.h" |
| #include "sw/device/lib/base/macros.h" |
| #include "sw/device/lib/base/memory.h" |
| #include "sw/device/lib/base/multibits.h" |
| #include "sw/device/lib/base/stdasm.h" |
| #include "sw/device/silicon_creator/lib/drivers/alert.h" |
| #include "sw/device/silicon_creator/lib/drivers/lifecycle.h" |
| #include "sw/device/silicon_creator/lib/drivers/otp.h" |
| #include "sw/device/silicon_creator/lib/epmp_defs.h" |
| |
| #include "alert_handler_regs.h" |
| #include "flash_ctrl_regs.h" |
| #include "hw/top_earlgrey/sw/autogen/top_earlgrey.h" |
| #include "keymgr_regs.h" |
| #include "lc_ctrl_regs.h" |
| #include "otp_ctrl_regs.h" |
| #include "rstmgr_regs.h" |
| #include "rv_core_ibex_regs.h" |
| #include "sram_ctrl_regs.h" |
| #include "uart_regs.h" |
| |
| static_assert(ALERT_HANDLER_ALERT_CLASS_SHADOWED_MULTIREG_COUNT <= |
| OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_CLASSIFICATION_SIZE / 4, |
| "More alerts than alert classification OTP words!"); |
| static_assert( |
| ALERT_HANDLER_LOC_ALERT_CLASS_SHADOWED_MULTIREG_COUNT <= |
| OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_LOCAL_ALERT_CLASSIFICATION_SIZE / 4, |
| "More local alerts than local alert classification OTP words!"); |
| |
| #define NO_MODIFIERS |
| |
| #ifndef OT_PLATFORM_RV32 |
| // If we're building as a unit test, rename the shutdown functions so they |
| // can be mocked and/or tested individually. |
| // The unmodified function name will be declared as `extern` so the test |
| // program can supply its own implementation. The implementation present |
| // in this file will be named `unmocked_${name}` so the test program can |
| // invoke it for testing. |
| #define SHUTDOWN_FUNC(modifiers_, name_) \ |
| extern void name_; \ |
| void unmocked_##name_ |
| #else |
| #define SHUTDOWN_FUNC(modifiers_, name_) \ |
| OT_ALWAYS_INLINE \ |
| static modifiers_ void name_ |
| #endif |
| |
| // Convert the alert class to an index. |
| // This is required because I expect to change the constant definitions in |
| // alert_class_t to have reasonable hamming distances. |
| static size_t clsindex(alert_class_t cls) { |
| switch (cls) { |
| case kAlertClassA: |
| return 0; |
| case kAlertClassB: |
| return 1; |
| case kAlertClassC: |
| return 2; |
| case kAlertClassD: |
| return 3; |
| default: |
| return 0; |
| } |
| } |
| |
| rom_error_t shutdown_init(lifecycle_state_t lc_state) { |
| // `lc_shift` values for different lifecycle states. |
| enum { |
| kLcShiftProd = 0, |
| kLcShiftProdEnd = 8, |
| kLcShiftDev = 16, |
| kLcShiftRma = 24, |
| }; |
| |
| // Are we in a lifecycle state which needs alert configuration? |
| uint32_t lc_shift; |
| uint32_t lc_shift_masked; |
| switch (launder32(lc_state)) { |
| case kLcStateTest: |
| HARDENED_CHECK_EQ(lc_state, kLcStateTest); |
| // Don't configure alerts during manufacturing as OTP may not have been |
| // programmed yet. |
| return kErrorOk; |
| case kLcStateProd: |
| HARDENED_CHECK_EQ(lc_state, kLcStateProd); |
| lc_shift = kLcShiftProd; |
| // First operand is laundered to prevent constant-folding of |
| // xor-of-constants. |
| lc_shift_masked = launder32(kLcShiftProd) ^ kLcStateProd; |
| break; |
| case kLcStateProdEnd: |
| HARDENED_CHECK_EQ(lc_state, kLcStateProdEnd); |
| lc_shift = kLcShiftProdEnd; |
| lc_shift_masked = launder32(kLcShiftProdEnd) ^ kLcStateProdEnd; |
| break; |
| case kLcStateDev: |
| HARDENED_CHECK_EQ(lc_state, kLcStateDev); |
| lc_shift = kLcShiftDev; |
| lc_shift_masked = launder32(kLcShiftDev) ^ kLcStateDev; |
| break; |
| case kLcStateRma: |
| HARDENED_CHECK_EQ(lc_state, kLcStateRma); |
| lc_shift = kLcShiftRma; |
| lc_shift_masked = launder32(kLcShiftRma) ^ kLcStateRma; |
| break; |
| default: |
| HARDENED_UNREACHABLE(); |
| } |
| |
| // Get the enable and escalation settings for all four alert classes. |
| // Each of these OTP words is composed of 4 byte enums with the enable and |
| // escalate configs per alert class (a/b/c/d). |
| size_t i = 0; |
| rom_error_t error = kErrorOk; |
| uint32_t class_enable = |
| otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_CLASS_EN_OFFSET); |
| uint32_t class_escalate = |
| otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_ESCALATION_OFFSET); |
| alert_enable_t enable[ALERT_CLASSES]; |
| alert_escalate_t escalate[ALERT_CLASSES]; |
| for (i = 0; launder32(i) < ALERT_CLASSES; ++i) { |
| enable[i] = (alert_enable_t)bitfield_field32_read( |
| class_enable, (bitfield_field32_t){.mask = 0xff, .index = i * 8}); |
| escalate[i] = (alert_escalate_t)bitfield_field32_read( |
| class_escalate, (bitfield_field32_t){.mask = 0xff, .index = i * 8}); |
| } |
| if (i != ALERT_CLASSES) { |
| error = kErrorUnknown; |
| } |
| |
| // For each alert, read its corresponding OTP word and extract the class |
| // configuration for the current lifecycle state. |
| for (i = 0; launder32(i) < ALERT_HANDLER_ALERT_CLASS_SHADOWED_MULTIREG_COUNT; |
| ++i) { |
| uint32_t value = |
| otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_CLASSIFICATION_OFFSET + |
| i * sizeof(uint32_t)); |
| alert_class_t cls = (alert_class_t)bitfield_field32_read( |
| value, (bitfield_field32_t){.mask = 0xff, .index = lc_shift}); |
| rom_error_t e = alert_configure(i, cls, enable[clsindex(cls)]); |
| if (e != kErrorOk) { |
| // Keep going if there is an error programming one alert. We want to |
| // program them all. |
| error = e; |
| } |
| } |
| if (i != ALERT_HANDLER_ALERT_CLASS_SHADOWED_MULTIREG_COUNT) { |
| error = kErrorUnknown; |
| } |
| |
| // For each local alert, read its corresponding OTP word and extract the class |
| // configuration for the current lifecycle state. |
| for (i = 0; |
| launder32(i) < ALERT_HANDLER_LOC_ALERT_CLASS_SHADOWED_MULTIREG_COUNT; |
| ++i) { |
| uint32_t value = otp_read32( |
| OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_LOCAL_ALERT_CLASSIFICATION_OFFSET + |
| i * sizeof(uint32_t)); |
| alert_class_t cls = (alert_class_t)bitfield_field32_read( |
| value, (bitfield_field32_t){.mask = 0xff, .index = lc_shift}); |
| rom_error_t e = alert_local_configure(i, cls, enable[clsindex(cls)]); |
| if (e != kErrorOk) { |
| // Keep going if there is an error programming one alert. We want to |
| // program them all. |
| error = e; |
| } |
| } |
| if (i != ALERT_HANDLER_LOC_ALERT_CLASS_SHADOWED_MULTIREG_COUNT) { |
| error = kErrorUnknown; |
| } |
| |
| // Check `lc_shift` value. |
| if ((lc_shift_masked ^ lc_state) != lc_shift) { |
| error = kErrorUnknown; |
| } |
| |
| // For each alert class, configure the various escalation parameters. |
| const alert_class_t kClasses[] = { |
| kAlertClassA, |
| kAlertClassB, |
| kAlertClassC, |
| kAlertClassD, |
| }; |
| alert_class_config_t config; |
| for (i = 0; launder32(i) < ALERT_CLASSES; ++i) { |
| config.enabled = enable[i]; |
| config.escalation = escalate[i]; |
| config.accum_threshold = |
| otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_ACCUM_THRESH_OFFSET + |
| i * sizeof(uint32_t)); |
| config.timeout_cycles = |
| otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_TIMEOUT_CYCLES_OFFSET + |
| i * sizeof(uint32_t)); |
| size_t phase = 0; |
| for (; launder32(phase) < ARRAYSIZE(config.phase_cycles); ++phase) { |
| config.phase_cycles[phase] = otp_read32( |
| OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_PHASE_CYCLES_OFFSET + |
| (i * ARRAYSIZE(config.phase_cycles) + phase) * sizeof(uint32_t)); |
| } |
| if (phase != ARRAYSIZE(config.phase_cycles)) { |
| error = kErrorUnknown; |
| } |
| |
| rom_error_t e = alert_class_configure(kClasses[i], &config); |
| if (e != kErrorOk) { |
| // Keep going if there is an error programming an alert class. We want to |
| // program them all. |
| error = e; |
| } |
| } |
| if (i != ALERT_CLASSES) { |
| error = kErrorUnknown; |
| } |
| return error; |
| } |
| |
| /** |
| * Implementation of `shutdown_redact` that is guaranteed to be inlined. |
| * |
| * This function must be inlined because it is called from `shutdown_finalize`. |
| */ |
| OT_ALWAYS_INLINE |
| static uint32_t shutdown_redact_inline(rom_error_t reason, |
| shutdown_error_redact_t severity) { |
| uint32_t redacted = (uint32_t)reason; |
| if (reason == kErrorOk) { |
| return 0; |
| } |
| switch (severity) { |
| case kShutdownErrorRedactModule: |
| redacted = bitfield_field32_write(redacted, ROM_ERROR_FIELD_MODULE, 0); |
| OT_FALLTHROUGH_INTENDED; |
| case kShutdownErrorRedactError: |
| redacted = bitfield_field32_write(redacted, ROM_ERROR_FIELD_ERROR, 0); |
| OT_FALLTHROUGH_INTENDED; |
| case kShutdownErrorRedactNone: |
| break; |
| case kShutdownErrorRedactAll: |
| OT_FALLTHROUGH_INTENDED; |
| default: |
| redacted = kErrorUnknown; |
| } |
| return redacted; |
| } |
| |
| uint32_t shutdown_redact(rom_error_t reason, shutdown_error_redact_t severity) { |
| return shutdown_redact_inline(reason, severity); |
| } |
| |
| /** |
| * Implementation of `shutdown_redact_policy` that is guaranteed to be inlined. |
| * |
| * This function must be inlined because it is called from `shutdown_finalize`. |
| */ |
| OT_ALWAYS_INLINE |
| static shutdown_error_redact_t shutdown_redact_policy_inline( |
| uint32_t raw_state) { |
| switch (raw_state) { |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED0: |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED1: |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED2: |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED3: |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED4: |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED5: |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED6: |
| case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED7: |
| case LC_CTRL_LC_STATE_STATE_VALUE_RMA: |
| // No error redaction in TEST_UNLOCKED and RMA states. |
| return kShutdownErrorRedactNone; |
| case LC_CTRL_LC_STATE_STATE_VALUE_DEV: |
| case LC_CTRL_LC_STATE_STATE_VALUE_PROD: |
| case LC_CTRL_LC_STATE_STATE_VALUE_PROD_END: |
| // In production states use the redaction level specified in OTP. |
| return (shutdown_error_redact_t)abs_mmio_read32( |
| TOP_EARLGREY_OTP_CTRL_CORE_BASE_ADDR + |
| OTP_CTRL_SW_CFG_WINDOW_REG_OFFSET + |
| OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ERROR_REPORTING_OFFSET); |
| default: |
| // Redact everything if in an unexpected lifecycle state. |
| return kShutdownErrorRedactAll; |
| } |
| } |
| |
| shutdown_error_redact_t shutdown_redact_policy(void) { |
| // Determine the error code redaction policy to apply according to the |
| // lifecycle state and OTP configuration. |
| // |
| // Note that we cannot use the lifecycle or OTP libraries since an error |
| // may trigger a call to `shutdown_finalize`. |
| uint32_t raw_state = |
| bitfield_field32_read(abs_mmio_read32(TOP_EARLGREY_LC_CTRL_BASE_ADDR + |
| LC_CTRL_LC_STATE_REG_OFFSET), |
| LC_CTRL_LC_STATE_STATE_FIELD); |
| return shutdown_redact_policy_inline(raw_state); |
| } |
| |
| enum { |
| /** |
| * Length of the hexadecimal representation. |
| */ |
| kHexStrLen = 8, |
| /** |
| * Total message length. |
| * |
| * This includes 4 character prefix before the hex string '\r\n' at the end of |
| * the message. |
| */ |
| kErrorMsgLen = kHexStrLen + 6, |
| /** |
| * Base address of UART. |
| */ |
| kUartBase = TOP_EARLGREY_UART0_BASE_ADDR, |
| /** |
| * UART TX FIFO size. |
| */ |
| kUartFifoSize = 32, |
| }; |
| |
| /** |
| * Prints a fixed-length (`kErrorMsgLen`) error message. |
| * |
| * The error message is a concatenation of a 4 character `prefix` (encoded as a |
| * 32-bit value), the hexadecimal representation of `val`, and '\r\n'. |
| * |
| * @param prefix Prefix encoded as a 32-bit value. |
| * @param val Integer to print. |
| */ |
| OT_ALWAYS_INLINE |
| static void shutdown_print(shutdown_log_prefix_t prefix, uint32_t val) { |
| // Print the 4 character `prefix`. |
| abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix); |
| abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix >> 8); |
| abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix >> 16); |
| abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix >> 24); |
| |
| // Print the hex representation of `val`. |
| const char kHexTable[16] = "0123456789abcdef"; |
| // `kHexStrLen` is laundered so that it is loaded to a register at every |
| // iteration. |
| for (size_t i = 0; i < launder32(kHexStrLen); ++i) { |
| uint8_t nibble = bitfield_field32_read( |
| val, (bitfield_field32_t){.mask = 0xf, .index = (7 - i) * 4}); |
| abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, kHexTable[nibble]); |
| } |
| abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, '\r'); |
| abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, '\n'); |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_report_error(rom_error_t reason)) { |
| uint32_t raw_state = |
| bitfield_field32_read(abs_mmio_read32(TOP_EARLGREY_LC_CTRL_BASE_ADDR + |
| LC_CTRL_LC_STATE_REG_OFFSET), |
| LC_CTRL_LC_STATE_STATE_FIELD); |
| |
| // Call the inline variant of `shutdown_redact_policy` because we want to |
| // guarantee that we won't jump to a different function. |
| shutdown_error_redact_t policy = shutdown_redact_policy_inline(raw_state); |
| |
| // Call the inline variant of `shutdown_redact` because we want to guarantee |
| // that we won't jump to a different function. |
| uint32_t redacted_error = shutdown_redact_inline(reason, policy); |
| |
| // Reset UART TX fifo and enable TX. |
| abs_mmio_write32(kUartBase + UART_FIFO_CTRL_REG_OFFSET, |
| bitfield_bit32_write(0, UART_FIFO_CTRL_TXRST_BIT, true)); |
| uint32_t uart_ctrl_reg = abs_mmio_read32(kUartBase + UART_CTRL_REG_OFFSET); |
| uart_ctrl_reg = bitfield_bit32_write(uart_ctrl_reg, UART_CTRL_TX_BIT, true); |
| abs_mmio_write32(kUartBase + UART_CTRL_REG_OFFSET, uart_ctrl_reg); |
| |
| // Print the error message and the raw life cycle state as reported by the |
| // hardware. |
| shutdown_print(kShutdownLogPrefixBootFault, redacted_error); |
| shutdown_print(kShutdownLogPrefixLifecycle, raw_state); |
| |
| #ifdef OT_PLATFORM_RV32 |
| // Wait until UART TX is complete. |
| static_assert(2 * kErrorMsgLen <= kUartFifoSize, |
| "Total message length must be less than TX FIFO size."); |
| CSR_WRITE(CSR_REG_MCYCLE, 0); |
| uint32_t mcycle; |
| bool tx_idle; |
| do { |
| tx_idle = |
| bitfield_bit32_read(abs_mmio_read32(kUartBase + UART_STATUS_REG_OFFSET), |
| UART_STATUS_TXIDLE_BIT); |
| CSR_READ(CSR_REG_MCYCLE, &mcycle); |
| } while (mcycle < kUartTxFifoCpuCycles && !tx_idle); |
| #endif |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_software_escalate(void)) { |
| enum { kBase = TOP_EARLGREY_RV_CORE_IBEX_CFG_BASE_ADDR }; |
| // Setting rv_core_ibex.SW_FATAL_ERR (rw0c) to any value other than |
| // `kMultiBitBool4False` will continuously cause alert events. |
| abs_mmio_write32(kBase + RV_CORE_IBEX_SW_FATAL_ERR_REG_OFFSET, 0); |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_keymgr_kill(void)) { |
| enum { |
| kBase = TOP_EARLGREY_KEYMGR_BASE_ADDR, |
| }; |
| uint32_t reg = |
| bitfield_field32_write(0, KEYMGR_CONTROL_SHADOWED_DEST_SEL_FIELD, |
| KEYMGR_CONTROL_SHADOWED_DEST_SEL_VALUE_NONE); |
| reg = bitfield_field32_write(reg, KEYMGR_CONTROL_SHADOWED_OPERATION_FIELD, |
| KEYMGR_CONTROL_SHADOWED_OPERATION_VALUE_DISABLE); |
| abs_mmio_write32_shadowed(kBase + KEYMGR_CONTROL_SHADOWED_REG_OFFSET, reg); |
| |
| abs_mmio_write32(kBase + KEYMGR_START_REG_OFFSET, 1); |
| abs_mmio_write32(kBase + KEYMGR_SIDELOAD_CLEAR_REG_OFFSET, 1); |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_reset(void)) { |
| enum { kBase = TOP_EARLGREY_RSTMGR_AON_BASE_ADDR }; |
| abs_mmio_write32(kBase + RSTMGR_RESET_REQ_REG_OFFSET, kMultiBitBool4True); |
| } |
| |
| SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_flash_kill(void)) { |
| enum { kBase = TOP_EARLGREY_FLASH_CTRL_CORE_BASE_ADDR }; |
| // Setting DIS (rw0c) to a value other than 5 will disable flash permanently. |
| abs_mmio_write32(kBase + FLASH_CTRL_DIS_REG_OFFSET, 0); |
| } |
| |
| SHUTDOWN_FUNC(noreturn, shutdown_hang(void)) { |
| enum { |
| kSramCtrlBase = TOP_EARLGREY_SRAM_CTRL_MAIN_REGS_BASE_ADDR, |
| kRstmgrBase = TOP_EARLGREY_RSTMGR_AON_BASE_ADDR, |
| }; |
| |
| // Disable SRAM execution and lock the register. |
| // Note: In addition to this register, which is disabled by default at reset, |
| // SRAM execution is gated by the lifecycle state |
| // (SRAM_CTRL.INSTR.BUS.LC_GATED) and EN_SRAM_IFETCH item in the HW_CFG OTP |
| // partition. |
| abs_mmio_write32(kSramCtrlBase + SRAM_CTRL_EXEC_EN_OFFSET, 0); |
| abs_mmio_write32(kSramCtrlBase + SRAM_CTRL_EXEC_REGWEN_REG_OFFSET, 0); |
| |
| // Switch to assembly as RAM (incl. stack) is about to get scrambled. |
| #ifdef OT_PLATFORM_RV32 |
| asm volatile( |
| ".L_shutdown_hang_asm_start:" |
| // Request a new scrambling key. |
| "sw %[kSramRenewKey], %[kSramCtrlCtrlReg](%[kSramCtrlBase]);" |
| // Request a system reset. |
| "sw %[kMultiBitBool4True], %[kRstmgrResetReqReg](%[kRstmgrBase]);" |
| |
| // Reconfigure ePMP such that only this inline asm is executable: |
| // - Entry 1: TOR, LRX, [.L_shutdown_hang_asm_start, |
| // .L_shutdown_hang_asm_end). |
| // - Entry 2: NAPOT, L, entire address space. |
| // - MSECCFG: MMWP set RLB unset to prevent any further modifications. |
| "la t0, .L_shutdown_hang_asm_start;" |
| "srli t0, t0, 2;" |
| "csrw pmpaddr0, t0;" |
| "la t0, .L_shutdown_hang_asm_end;" |
| "srli t0, t0, 2;" |
| "csrw pmpaddr1, t0;" |
| "csrw pmpaddr2, %[kNapotEntireAddressSpace];" |
| "csrw pmpcfg0, %[kPmpCfg0];" |
| "csrw pmpcfg1, zero;" |
| "csrw pmpcfg2, zero;" |
| "csrw pmpcfg3, zero;" |
| "csrw %[kMSecCfgReg], %[kMSecCfgVal];" |
| |
| // Generate a halt-maze. |
| "wfi; wfi; wfi; wfi; j .L_shutdown_hang_asm_start;" |
| "wfi; wfi; j .L_shutdown_hang_asm_start;" |
| "wfi; j .L_shutdown_hang_asm_start;" |
| ".L_shutdown_hang_asm_end:" |
| : |
| : [kSramRenewKey] "r"(1 << SRAM_CTRL_CTRL_RENEW_SCR_KEY_BIT), |
| [kSramCtrlCtrlReg] "I"(SRAM_CTRL_CTRL_REG_OFFSET), |
| [kSramCtrlBase] "r"(kSramCtrlBase), |
| [kMultiBitBool4True] "r"(kMultiBitBool4True), |
| [kRstmgrResetReqReg] "I"(RSTMGR_RESET_REQ_REG_OFFSET), |
| [kRstmgrBase] "r"(kRstmgrBase), |
| [kNapotEntireAddressSpace] "r"(0x7fffffff), |
| [kPmpCfg0] "r"((EPMP_CFG_A_TOR | EPMP_CFG_LRX) << 8 | |
| (EPMP_CFG_A_NAPOT | EPMP_CFG_L) << 16), |
| [kMSecCfgReg] "I"(EPMP_MSECCFG), [kMSecCfgVal] "r"(EPMP_MSECCFG_MMWP)); |
| OT_UNREACHABLE(); |
| #endif |
| } |
| |
| #ifdef OT_PLATFORM_RV32 |
| /** |
| * The shutdown_finalize function goes into the .shutdown section which is |
| * placed by the linker script after all other executable code. |
| */ |
| __attribute__((section(".shutdown"))) |
| #endif |
| void shutdown_finalize(rom_error_t reason) { |
| shutdown_report_error(reason); |
| shutdown_software_escalate(); |
| shutdown_keymgr_kill(); |
| // Reset before killing the flash to be able to use this also in flash. |
| shutdown_reset(); |
| shutdown_flash_kill(); |
| // If we get here, we'll wait for the watchdog to reset the chip. |
| shutdown_hang(); |
| } |