blob: d9bcc5096dc56d98be1c6c34b5bb5a33f42c6cdc [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module keymgr_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output keymgr_reg_pkg::keymgr_reg2hw_t reg2hw, // Write
input keymgr_reg_pkg::keymgr_hw2reg_t hw2reg, // Read
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import keymgr_reg_pkg::* ;
localparam int AW = 8;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
assign tl_reg_h2d = tl_i;
assign tl_o = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err ;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_qs;
logic intr_state_wd;
logic intr_state_we;
logic intr_enable_qs;
logic intr_enable_wd;
logic intr_enable_we;
logic intr_test_wd;
logic intr_test_we;
logic alert_test_fatal_fault_err_wd;
logic alert_test_fatal_fault_err_we;
logic alert_test_recov_operation_err_wd;
logic alert_test_recov_operation_err_we;
logic cfgen_qs;
logic cfgen_re;
logic control_start_qs;
logic control_start_wd;
logic control_start_we;
logic [2:0] control_operation_qs;
logic [2:0] control_operation_wd;
logic control_operation_we;
logic [1:0] control_dest_sel_qs;
logic [1:0] control_dest_sel_wd;
logic control_dest_sel_we;
logic sideload_clear_qs;
logic sideload_clear_wd;
logic sideload_clear_we;
logic [15:0] reseed_interval_qs;
logic [15:0] reseed_interval_wd;
logic reseed_interval_we;
logic sw_binding_en_qs;
logic sw_binding_en_wd;
logic sw_binding_en_we;
logic sw_binding_en_re;
logic [31:0] sw_binding_0_qs;
logic [31:0] sw_binding_0_wd;
logic sw_binding_0_we;
logic [31:0] sw_binding_1_qs;
logic [31:0] sw_binding_1_wd;
logic sw_binding_1_we;
logic [31:0] sw_binding_2_qs;
logic [31:0] sw_binding_2_wd;
logic sw_binding_2_we;
logic [31:0] sw_binding_3_qs;
logic [31:0] sw_binding_3_wd;
logic sw_binding_3_we;
logic [31:0] salt_0_qs;
logic [31:0] salt_0_wd;
logic salt_0_we;
logic [31:0] salt_1_qs;
logic [31:0] salt_1_wd;
logic salt_1_we;
logic [31:0] salt_2_qs;
logic [31:0] salt_2_wd;
logic salt_2_we;
logic [31:0] salt_3_qs;
logic [31:0] salt_3_wd;
logic salt_3_we;
logic [31:0] key_version_qs;
logic [31:0] key_version_wd;
logic key_version_we;
logic max_creator_key_ver_en_qs;
logic max_creator_key_ver_en_wd;
logic max_creator_key_ver_en_we;
logic [31:0] max_creator_key_ver_qs;
logic [31:0] max_creator_key_ver_wd;
logic max_creator_key_ver_we;
logic max_owner_int_key_ver_en_qs;
logic max_owner_int_key_ver_en_wd;
logic max_owner_int_key_ver_en_we;
logic [31:0] max_owner_int_key_ver_qs;
logic [31:0] max_owner_int_key_ver_wd;
logic max_owner_int_key_ver_we;
logic max_owner_key_ver_en_qs;
logic max_owner_key_ver_en_wd;
logic max_owner_key_ver_en_we;
logic [31:0] max_owner_key_ver_qs;
logic [31:0] max_owner_key_ver_wd;
logic max_owner_key_ver_we;
logic [31:0] sw_share0_output_0_qs;
logic [31:0] sw_share0_output_0_wd;
logic sw_share0_output_0_we;
logic [31:0] sw_share0_output_1_qs;
logic [31:0] sw_share0_output_1_wd;
logic sw_share0_output_1_we;
logic [31:0] sw_share0_output_2_qs;
logic [31:0] sw_share0_output_2_wd;
logic sw_share0_output_2_we;
logic [31:0] sw_share0_output_3_qs;
logic [31:0] sw_share0_output_3_wd;
logic sw_share0_output_3_we;
logic [31:0] sw_share0_output_4_qs;
logic [31:0] sw_share0_output_4_wd;
logic sw_share0_output_4_we;
logic [31:0] sw_share0_output_5_qs;
logic [31:0] sw_share0_output_5_wd;
logic sw_share0_output_5_we;
logic [31:0] sw_share0_output_6_qs;
logic [31:0] sw_share0_output_6_wd;
logic sw_share0_output_6_we;
logic [31:0] sw_share0_output_7_qs;
logic [31:0] sw_share0_output_7_wd;
logic sw_share0_output_7_we;
logic [31:0] sw_share1_output_0_qs;
logic [31:0] sw_share1_output_0_wd;
logic sw_share1_output_0_we;
logic [31:0] sw_share1_output_1_qs;
logic [31:0] sw_share1_output_1_wd;
logic sw_share1_output_1_we;
logic [31:0] sw_share1_output_2_qs;
logic [31:0] sw_share1_output_2_wd;
logic sw_share1_output_2_we;
logic [31:0] sw_share1_output_3_qs;
logic [31:0] sw_share1_output_3_wd;
logic sw_share1_output_3_we;
logic [31:0] sw_share1_output_4_qs;
logic [31:0] sw_share1_output_4_wd;
logic sw_share1_output_4_we;
logic [31:0] sw_share1_output_5_qs;
logic [31:0] sw_share1_output_5_wd;
logic sw_share1_output_5_we;
logic [31:0] sw_share1_output_6_qs;
logic [31:0] sw_share1_output_6_wd;
logic sw_share1_output_6_we;
logic [31:0] sw_share1_output_7_qs;
logic [31:0] sw_share1_output_7_wd;
logic sw_share1_output_7_we;
logic [2:0] working_state_qs;
logic [1:0] op_status_qs;
logic [1:0] op_status_wd;
logic op_status_we;
logic err_code_invalid_op_qs;
logic err_code_invalid_op_wd;
logic err_code_invalid_op_we;
logic err_code_invalid_cmd_qs;
logic err_code_invalid_cmd_wd;
logic err_code_invalid_cmd_we;
logic err_code_invalid_kmac_input_qs;
logic err_code_invalid_kmac_input_wd;
logic err_code_invalid_kmac_input_we;
logic err_code_invalid_kmac_data_qs;
logic err_code_invalid_kmac_data_wd;
logic err_code_invalid_kmac_data_we;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q ),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q ),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
prim_subreg_ext #(
.DW (1)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.qe),
.q (reg2hw.intr_test.q ),
.qs ()
);
// R[alert_test]: V(True)
// F[fatal_fault_err]: 0:0
prim_subreg_ext #(
.DW (1)
) u_alert_test_fatal_fault_err (
.re (1'b0),
.we (alert_test_fatal_fault_err_we),
.wd (alert_test_fatal_fault_err_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.fatal_fault_err.qe),
.q (reg2hw.alert_test.fatal_fault_err.q ),
.qs ()
);
// F[recov_operation_err]: 1:1
prim_subreg_ext #(
.DW (1)
) u_alert_test_recov_operation_err (
.re (1'b0),
.we (alert_test_recov_operation_err_we),
.wd (alert_test_recov_operation_err_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.recov_operation_err.qe),
.q (reg2hw.alert_test.recov_operation_err.q ),
.qs ()
);
// R[cfgen]: V(True)
prim_subreg_ext #(
.DW (1)
) u_cfgen (
.re (cfgen_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.cfgen.d),
.qre (),
.qe (),
.q (),
.qs (cfgen_qs)
);
// R[control]: V(False)
// F[start]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_control_start (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (control_start_we & cfgen_qs),
.wd (control_start_wd),
// from internal hardware
.de (hw2reg.control.start.de),
.d (hw2reg.control.start.d ),
// to internal hardware
.qe (),
.q (reg2hw.control.start.q ),
// to register interface (read)
.qs (control_start_qs)
);
// F[operation]: 6:4
prim_subreg #(
.DW (3),
.SWACCESS("RW"),
.RESVAL (3'h1)
) u_control_operation (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (control_operation_we & cfgen_qs),
.wd (control_operation_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.control.operation.q ),
// to register interface (read)
.qs (control_operation_qs)
);
// F[dest_sel]: 13:12
prim_subreg #(
.DW (2),
.SWACCESS("RW"),
.RESVAL (2'h0)
) u_control_dest_sel (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (control_dest_sel_we & cfgen_qs),
.wd (control_dest_sel_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.control.dest_sel.q ),
// to register interface (read)
.qs (control_dest_sel_qs)
);
// R[sideload_clear]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_sideload_clear (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sideload_clear_we),
.wd (sideload_clear_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.sideload_clear.q ),
// to register interface (read)
.qs (sideload_clear_qs)
);
// R[reseed_interval]: V(False)
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h100)
) u_reseed_interval (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (reseed_interval_we),
.wd (reseed_interval_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.reseed_interval.q ),
// to register interface (read)
.qs (reseed_interval_qs)
);
// R[sw_binding_en]: V(True)
prim_subreg_ext #(
.DW (1)
) u_sw_binding_en (
.re (sw_binding_en_re),
.we (sw_binding_en_we),
.wd (sw_binding_en_wd),
.d (hw2reg.sw_binding_en.d),
.qre (),
.qe (reg2hw.sw_binding_en.qe),
.q (reg2hw.sw_binding_en.q ),
.qs (sw_binding_en_qs)
);
// Subregister 0 of Multireg sw_binding
// R[sw_binding_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_sw_binding_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (sw_binding_0_we & cfgen_qs),
.wd (sw_binding_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.sw_binding[0].q ),
// to register interface (read)
.qs (sw_binding_0_qs)
);
// Subregister 1 of Multireg sw_binding
// R[sw_binding_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_sw_binding_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (sw_binding_1_we & cfgen_qs),
.wd (sw_binding_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.sw_binding[1].q ),
// to register interface (read)
.qs (sw_binding_1_qs)
);
// Subregister 2 of Multireg sw_binding
// R[sw_binding_2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_sw_binding_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (sw_binding_2_we & cfgen_qs),
.wd (sw_binding_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.sw_binding[2].q ),
// to register interface (read)
.qs (sw_binding_2_qs)
);
// Subregister 3 of Multireg sw_binding
// R[sw_binding_3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_sw_binding_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (sw_binding_3_we & cfgen_qs),
.wd (sw_binding_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.sw_binding[3].q ),
// to register interface (read)
.qs (sw_binding_3_qs)
);
// Subregister 0 of Multireg salt
// R[salt_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_salt_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (salt_0_we & cfgen_qs),
.wd (salt_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.salt[0].q ),
// to register interface (read)
.qs (salt_0_qs)
);
// Subregister 1 of Multireg salt
// R[salt_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_salt_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (salt_1_we & cfgen_qs),
.wd (salt_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.salt[1].q ),
// to register interface (read)
.qs (salt_1_qs)
);
// Subregister 2 of Multireg salt
// R[salt_2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_salt_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (salt_2_we & cfgen_qs),
.wd (salt_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.salt[2].q ),
// to register interface (read)
.qs (salt_2_qs)
);
// Subregister 3 of Multireg salt
// R[salt_3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_salt_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (salt_3_we & cfgen_qs),
.wd (salt_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.salt[3].q ),
// to register interface (read)
.qs (salt_3_qs)
);
// Subregister 0 of Multireg key_version
// R[key_version]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_key_version (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_version_we & cfgen_qs),
.wd (key_version_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_version[0].q ),
// to register interface (read)
.qs (key_version_qs)
);
// R[max_creator_key_ver_en]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_max_creator_key_ver_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (max_creator_key_ver_en_we),
.wd (max_creator_key_ver_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (max_creator_key_ver_en_qs)
);
// R[max_creator_key_ver]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_max_creator_key_ver (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (max_creator_key_ver_we & max_creator_key_ver_en_qs),
.wd (max_creator_key_ver_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.max_creator_key_ver.q ),
// to register interface (read)
.qs (max_creator_key_ver_qs)
);
// R[max_owner_int_key_ver_en]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_max_owner_int_key_ver_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (max_owner_int_key_ver_en_we),
.wd (max_owner_int_key_ver_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (max_owner_int_key_ver_en_qs)
);
// R[max_owner_int_key_ver]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h1)
) u_max_owner_int_key_ver (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (max_owner_int_key_ver_we & max_owner_int_key_ver_en_qs),
.wd (max_owner_int_key_ver_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.max_owner_int_key_ver.q ),
// to register interface (read)
.qs (max_owner_int_key_ver_qs)
);
// R[max_owner_key_ver_en]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_max_owner_key_ver_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (max_owner_key_ver_en_we),
.wd (max_owner_key_ver_en_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (max_owner_key_ver_en_qs)
);
// R[max_owner_key_ver]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_max_owner_key_ver (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (max_owner_key_ver_we & max_owner_key_ver_en_qs),
.wd (max_owner_key_ver_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.max_owner_key_ver.q ),
// to register interface (read)
.qs (max_owner_key_ver_qs)
);
// Subregister 0 of Multireg sw_share0_output
// R[sw_share0_output_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_0_we),
.wd (sw_share0_output_0_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[0].de),
.d (hw2reg.sw_share0_output[0].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_0_qs)
);
// Subregister 1 of Multireg sw_share0_output
// R[sw_share0_output_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_1_we),
.wd (sw_share0_output_1_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[1].de),
.d (hw2reg.sw_share0_output[1].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_1_qs)
);
// Subregister 2 of Multireg sw_share0_output
// R[sw_share0_output_2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_2_we),
.wd (sw_share0_output_2_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[2].de),
.d (hw2reg.sw_share0_output[2].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_2_qs)
);
// Subregister 3 of Multireg sw_share0_output
// R[sw_share0_output_3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_3_we),
.wd (sw_share0_output_3_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[3].de),
.d (hw2reg.sw_share0_output[3].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_3_qs)
);
// Subregister 4 of Multireg sw_share0_output
// R[sw_share0_output_4]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_4_we),
.wd (sw_share0_output_4_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[4].de),
.d (hw2reg.sw_share0_output[4].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_4_qs)
);
// Subregister 5 of Multireg sw_share0_output
// R[sw_share0_output_5]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_5_we),
.wd (sw_share0_output_5_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[5].de),
.d (hw2reg.sw_share0_output[5].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_5_qs)
);
// Subregister 6 of Multireg sw_share0_output
// R[sw_share0_output_6]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_6 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_6_we),
.wd (sw_share0_output_6_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[6].de),
.d (hw2reg.sw_share0_output[6].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_6_qs)
);
// Subregister 7 of Multireg sw_share0_output
// R[sw_share0_output_7]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share0_output_7 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share0_output_7_we),
.wd (sw_share0_output_7_wd),
// from internal hardware
.de (hw2reg.sw_share0_output[7].de),
.d (hw2reg.sw_share0_output[7].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share0_output_7_qs)
);
// Subregister 0 of Multireg sw_share1_output
// R[sw_share1_output_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_0_we),
.wd (sw_share1_output_0_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[0].de),
.d (hw2reg.sw_share1_output[0].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_0_qs)
);
// Subregister 1 of Multireg sw_share1_output
// R[sw_share1_output_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_1_we),
.wd (sw_share1_output_1_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[1].de),
.d (hw2reg.sw_share1_output[1].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_1_qs)
);
// Subregister 2 of Multireg sw_share1_output
// R[sw_share1_output_2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_2_we),
.wd (sw_share1_output_2_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[2].de),
.d (hw2reg.sw_share1_output[2].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_2_qs)
);
// Subregister 3 of Multireg sw_share1_output
// R[sw_share1_output_3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_3_we),
.wd (sw_share1_output_3_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[3].de),
.d (hw2reg.sw_share1_output[3].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_3_qs)
);
// Subregister 4 of Multireg sw_share1_output
// R[sw_share1_output_4]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_4_we),
.wd (sw_share1_output_4_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[4].de),
.d (hw2reg.sw_share1_output[4].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_4_qs)
);
// Subregister 5 of Multireg sw_share1_output
// R[sw_share1_output_5]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_5_we),
.wd (sw_share1_output_5_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[5].de),
.d (hw2reg.sw_share1_output[5].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_5_qs)
);
// Subregister 6 of Multireg sw_share1_output
// R[sw_share1_output_6]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_6 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_6_we),
.wd (sw_share1_output_6_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[6].de),
.d (hw2reg.sw_share1_output[6].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_6_qs)
);
// Subregister 7 of Multireg sw_share1_output
// R[sw_share1_output_7]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RC"),
.RESVAL (32'h0)
) u_sw_share1_output_7 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (sw_share1_output_7_we),
.wd (sw_share1_output_7_wd),
// from internal hardware
.de (hw2reg.sw_share1_output[7].de),
.d (hw2reg.sw_share1_output[7].d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_share1_output_7_qs)
);
// R[working_state]: V(False)
prim_subreg #(
.DW (3),
.SWACCESS("RO"),
.RESVAL (3'h0)
) u_working_state (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.working_state.de),
.d (hw2reg.working_state.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (working_state_qs)
);
// R[op_status]: V(False)
prim_subreg #(
.DW (2),
.SWACCESS("W1C"),
.RESVAL (2'h0)
) u_op_status (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (op_status_we),
.wd (op_status_wd),
// from internal hardware
.de (hw2reg.op_status.de),
.d (hw2reg.op_status.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (op_status_qs)
);
// R[err_code]: V(False)
// F[invalid_op]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_err_code_invalid_op (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (err_code_invalid_op_we),
.wd (err_code_invalid_op_wd),
// from internal hardware
.de (hw2reg.err_code.invalid_op.de),
.d (hw2reg.err_code.invalid_op.d ),
// to internal hardware
.qe (),
.q (reg2hw.err_code.invalid_op.q ),
// to register interface (read)
.qs (err_code_invalid_op_qs)
);
// F[invalid_cmd]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_err_code_invalid_cmd (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (err_code_invalid_cmd_we),
.wd (err_code_invalid_cmd_wd),
// from internal hardware
.de (hw2reg.err_code.invalid_cmd.de),
.d (hw2reg.err_code.invalid_cmd.d ),
// to internal hardware
.qe (),
.q (reg2hw.err_code.invalid_cmd.q ),
// to register interface (read)
.qs (err_code_invalid_cmd_qs)
);
// F[invalid_kmac_input]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_err_code_invalid_kmac_input (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (err_code_invalid_kmac_input_we),
.wd (err_code_invalid_kmac_input_wd),
// from internal hardware
.de (hw2reg.err_code.invalid_kmac_input.de),
.d (hw2reg.err_code.invalid_kmac_input.d ),
// to internal hardware
.qe (),
.q (reg2hw.err_code.invalid_kmac_input.q ),
// to register interface (read)
.qs (err_code_invalid_kmac_input_qs)
);
// F[invalid_kmac_data]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_err_code_invalid_kmac_data (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (err_code_invalid_kmac_data_we),
.wd (err_code_invalid_kmac_data_wd),
// from internal hardware
.de (hw2reg.err_code.invalid_kmac_data.de),
.d (hw2reg.err_code.invalid_kmac_data.d ),
// to internal hardware
.qe (),
.q (reg2hw.err_code.invalid_kmac_data.q ),
// to register interface (read)
.qs (err_code_invalid_kmac_data_qs)
);
logic [42:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == KEYMGR_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == KEYMGR_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == KEYMGR_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == KEYMGR_ALERT_TEST_OFFSET);
addr_hit[ 4] = (reg_addr == KEYMGR_CFGEN_OFFSET);
addr_hit[ 5] = (reg_addr == KEYMGR_CONTROL_OFFSET);
addr_hit[ 6] = (reg_addr == KEYMGR_SIDELOAD_CLEAR_OFFSET);
addr_hit[ 7] = (reg_addr == KEYMGR_RESEED_INTERVAL_OFFSET);
addr_hit[ 8] = (reg_addr == KEYMGR_SW_BINDING_EN_OFFSET);
addr_hit[ 9] = (reg_addr == KEYMGR_SW_BINDING_0_OFFSET);
addr_hit[10] = (reg_addr == KEYMGR_SW_BINDING_1_OFFSET);
addr_hit[11] = (reg_addr == KEYMGR_SW_BINDING_2_OFFSET);
addr_hit[12] = (reg_addr == KEYMGR_SW_BINDING_3_OFFSET);
addr_hit[13] = (reg_addr == KEYMGR_SALT_0_OFFSET);
addr_hit[14] = (reg_addr == KEYMGR_SALT_1_OFFSET);
addr_hit[15] = (reg_addr == KEYMGR_SALT_2_OFFSET);
addr_hit[16] = (reg_addr == KEYMGR_SALT_3_OFFSET);
addr_hit[17] = (reg_addr == KEYMGR_KEY_VERSION_OFFSET);
addr_hit[18] = (reg_addr == KEYMGR_MAX_CREATOR_KEY_VER_EN_OFFSET);
addr_hit[19] = (reg_addr == KEYMGR_MAX_CREATOR_KEY_VER_OFFSET);
addr_hit[20] = (reg_addr == KEYMGR_MAX_OWNER_INT_KEY_VER_EN_OFFSET);
addr_hit[21] = (reg_addr == KEYMGR_MAX_OWNER_INT_KEY_VER_OFFSET);
addr_hit[22] = (reg_addr == KEYMGR_MAX_OWNER_KEY_VER_EN_OFFSET);
addr_hit[23] = (reg_addr == KEYMGR_MAX_OWNER_KEY_VER_OFFSET);
addr_hit[24] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_0_OFFSET);
addr_hit[25] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_1_OFFSET);
addr_hit[26] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_2_OFFSET);
addr_hit[27] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_3_OFFSET);
addr_hit[28] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_4_OFFSET);
addr_hit[29] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_5_OFFSET);
addr_hit[30] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_6_OFFSET);
addr_hit[31] = (reg_addr == KEYMGR_SW_SHARE0_OUTPUT_7_OFFSET);
addr_hit[32] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_0_OFFSET);
addr_hit[33] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_1_OFFSET);
addr_hit[34] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_2_OFFSET);
addr_hit[35] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_3_OFFSET);
addr_hit[36] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_4_OFFSET);
addr_hit[37] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_5_OFFSET);
addr_hit[38] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_6_OFFSET);
addr_hit[39] = (reg_addr == KEYMGR_SW_SHARE1_OUTPUT_7_OFFSET);
addr_hit[40] = (reg_addr == KEYMGR_WORKING_STATE_OFFSET);
addr_hit[41] = (reg_addr == KEYMGR_OP_STATUS_OFFSET);
addr_hit[42] = (reg_addr == KEYMGR_ERR_CODE_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (KEYMGR_PERMIT[ 0] != (KEYMGR_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (KEYMGR_PERMIT[ 1] != (KEYMGR_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (KEYMGR_PERMIT[ 2] != (KEYMGR_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (KEYMGR_PERMIT[ 3] != (KEYMGR_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (KEYMGR_PERMIT[ 4] != (KEYMGR_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (KEYMGR_PERMIT[ 5] != (KEYMGR_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (KEYMGR_PERMIT[ 6] != (KEYMGR_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (KEYMGR_PERMIT[ 7] != (KEYMGR_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (KEYMGR_PERMIT[ 8] != (KEYMGR_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (KEYMGR_PERMIT[ 9] != (KEYMGR_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (KEYMGR_PERMIT[10] != (KEYMGR_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[11] && reg_we && (KEYMGR_PERMIT[11] != (KEYMGR_PERMIT[11] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[12] && reg_we && (KEYMGR_PERMIT[12] != (KEYMGR_PERMIT[12] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[13] && reg_we && (KEYMGR_PERMIT[13] != (KEYMGR_PERMIT[13] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[14] && reg_we && (KEYMGR_PERMIT[14] != (KEYMGR_PERMIT[14] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[15] && reg_we && (KEYMGR_PERMIT[15] != (KEYMGR_PERMIT[15] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[16] && reg_we && (KEYMGR_PERMIT[16] != (KEYMGR_PERMIT[16] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[17] && reg_we && (KEYMGR_PERMIT[17] != (KEYMGR_PERMIT[17] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[18] && reg_we && (KEYMGR_PERMIT[18] != (KEYMGR_PERMIT[18] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[19] && reg_we && (KEYMGR_PERMIT[19] != (KEYMGR_PERMIT[19] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[20] && reg_we && (KEYMGR_PERMIT[20] != (KEYMGR_PERMIT[20] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[21] && reg_we && (KEYMGR_PERMIT[21] != (KEYMGR_PERMIT[21] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[22] && reg_we && (KEYMGR_PERMIT[22] != (KEYMGR_PERMIT[22] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[23] && reg_we && (KEYMGR_PERMIT[23] != (KEYMGR_PERMIT[23] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[24] && reg_we && (KEYMGR_PERMIT[24] != (KEYMGR_PERMIT[24] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[25] && reg_we && (KEYMGR_PERMIT[25] != (KEYMGR_PERMIT[25] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[26] && reg_we && (KEYMGR_PERMIT[26] != (KEYMGR_PERMIT[26] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[27] && reg_we && (KEYMGR_PERMIT[27] != (KEYMGR_PERMIT[27] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[28] && reg_we && (KEYMGR_PERMIT[28] != (KEYMGR_PERMIT[28] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[29] && reg_we && (KEYMGR_PERMIT[29] != (KEYMGR_PERMIT[29] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[30] && reg_we && (KEYMGR_PERMIT[30] != (KEYMGR_PERMIT[30] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[31] && reg_we && (KEYMGR_PERMIT[31] != (KEYMGR_PERMIT[31] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[32] && reg_we && (KEYMGR_PERMIT[32] != (KEYMGR_PERMIT[32] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[33] && reg_we && (KEYMGR_PERMIT[33] != (KEYMGR_PERMIT[33] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[34] && reg_we && (KEYMGR_PERMIT[34] != (KEYMGR_PERMIT[34] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[35] && reg_we && (KEYMGR_PERMIT[35] != (KEYMGR_PERMIT[35] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[36] && reg_we && (KEYMGR_PERMIT[36] != (KEYMGR_PERMIT[36] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[37] && reg_we && (KEYMGR_PERMIT[37] != (KEYMGR_PERMIT[37] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[38] && reg_we && (KEYMGR_PERMIT[38] != (KEYMGR_PERMIT[38] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[39] && reg_we && (KEYMGR_PERMIT[39] != (KEYMGR_PERMIT[39] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[40] && reg_we && (KEYMGR_PERMIT[40] != (KEYMGR_PERMIT[40] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[41] && reg_we && (KEYMGR_PERMIT[41] != (KEYMGR_PERMIT[41] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[42] && reg_we && (KEYMGR_PERMIT[42] != (KEYMGR_PERMIT[42] & reg_be))) wr_err = 1'b1 ;
end
assign intr_state_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_wd = reg_wdata[0];
assign intr_enable_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_wd = reg_wdata[0];
assign intr_test_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_wd = reg_wdata[0];
assign alert_test_fatal_fault_err_we = addr_hit[3] & reg_we & ~wr_err;
assign alert_test_fatal_fault_err_wd = reg_wdata[0];
assign alert_test_recov_operation_err_we = addr_hit[3] & reg_we & ~wr_err;
assign alert_test_recov_operation_err_wd = reg_wdata[1];
assign cfgen_re = addr_hit[4] && reg_re;
assign control_start_we = addr_hit[5] & reg_we & ~wr_err;
assign control_start_wd = reg_wdata[0];
assign control_operation_we = addr_hit[5] & reg_we & ~wr_err;
assign control_operation_wd = reg_wdata[6:4];
assign control_dest_sel_we = addr_hit[5] & reg_we & ~wr_err;
assign control_dest_sel_wd = reg_wdata[13:12];
assign sideload_clear_we = addr_hit[6] & reg_we & ~wr_err;
assign sideload_clear_wd = reg_wdata[0];
assign reseed_interval_we = addr_hit[7] & reg_we & ~wr_err;
assign reseed_interval_wd = reg_wdata[15:0];
assign sw_binding_en_we = addr_hit[8] & reg_we & ~wr_err;
assign sw_binding_en_wd = reg_wdata[0];
assign sw_binding_en_re = addr_hit[8] && reg_re;
assign sw_binding_0_we = addr_hit[9] & reg_we & ~wr_err;
assign sw_binding_0_wd = reg_wdata[31:0];
assign sw_binding_1_we = addr_hit[10] & reg_we & ~wr_err;
assign sw_binding_1_wd = reg_wdata[31:0];
assign sw_binding_2_we = addr_hit[11] & reg_we & ~wr_err;
assign sw_binding_2_wd = reg_wdata[31:0];
assign sw_binding_3_we = addr_hit[12] & reg_we & ~wr_err;
assign sw_binding_3_wd = reg_wdata[31:0];
assign salt_0_we = addr_hit[13] & reg_we & ~wr_err;
assign salt_0_wd = reg_wdata[31:0];
assign salt_1_we = addr_hit[14] & reg_we & ~wr_err;
assign salt_1_wd = reg_wdata[31:0];
assign salt_2_we = addr_hit[15] & reg_we & ~wr_err;
assign salt_2_wd = reg_wdata[31:0];
assign salt_3_we = addr_hit[16] & reg_we & ~wr_err;
assign salt_3_wd = reg_wdata[31:0];
assign key_version_we = addr_hit[17] & reg_we & ~wr_err;
assign key_version_wd = reg_wdata[31:0];
assign max_creator_key_ver_en_we = addr_hit[18] & reg_we & ~wr_err;
assign max_creator_key_ver_en_wd = reg_wdata[0];
assign max_creator_key_ver_we = addr_hit[19] & reg_we & ~wr_err;
assign max_creator_key_ver_wd = reg_wdata[31:0];
assign max_owner_int_key_ver_en_we = addr_hit[20] & reg_we & ~wr_err;
assign max_owner_int_key_ver_en_wd = reg_wdata[0];
assign max_owner_int_key_ver_we = addr_hit[21] & reg_we & ~wr_err;
assign max_owner_int_key_ver_wd = reg_wdata[31:0];
assign max_owner_key_ver_en_we = addr_hit[22] & reg_we & ~wr_err;
assign max_owner_key_ver_en_wd = reg_wdata[0];
assign max_owner_key_ver_we = addr_hit[23] & reg_we & ~wr_err;
assign max_owner_key_ver_wd = reg_wdata[31:0];
assign sw_share0_output_0_we = addr_hit[24] & reg_re;
assign sw_share0_output_0_wd = '1;
assign sw_share0_output_1_we = addr_hit[25] & reg_re;
assign sw_share0_output_1_wd = '1;
assign sw_share0_output_2_we = addr_hit[26] & reg_re;
assign sw_share0_output_2_wd = '1;
assign sw_share0_output_3_we = addr_hit[27] & reg_re;
assign sw_share0_output_3_wd = '1;
assign sw_share0_output_4_we = addr_hit[28] & reg_re;
assign sw_share0_output_4_wd = '1;
assign sw_share0_output_5_we = addr_hit[29] & reg_re;
assign sw_share0_output_5_wd = '1;
assign sw_share0_output_6_we = addr_hit[30] & reg_re;
assign sw_share0_output_6_wd = '1;
assign sw_share0_output_7_we = addr_hit[31] & reg_re;
assign sw_share0_output_7_wd = '1;
assign sw_share1_output_0_we = addr_hit[32] & reg_re;
assign sw_share1_output_0_wd = '1;
assign sw_share1_output_1_we = addr_hit[33] & reg_re;
assign sw_share1_output_1_wd = '1;
assign sw_share1_output_2_we = addr_hit[34] & reg_re;
assign sw_share1_output_2_wd = '1;
assign sw_share1_output_3_we = addr_hit[35] & reg_re;
assign sw_share1_output_3_wd = '1;
assign sw_share1_output_4_we = addr_hit[36] & reg_re;
assign sw_share1_output_4_wd = '1;
assign sw_share1_output_5_we = addr_hit[37] & reg_re;
assign sw_share1_output_5_wd = '1;
assign sw_share1_output_6_we = addr_hit[38] & reg_re;
assign sw_share1_output_6_wd = '1;
assign sw_share1_output_7_we = addr_hit[39] & reg_re;
assign sw_share1_output_7_wd = '1;
assign op_status_we = addr_hit[41] & reg_we & ~wr_err;
assign op_status_wd = reg_wdata[1:0];
assign err_code_invalid_op_we = addr_hit[42] & reg_we & ~wr_err;
assign err_code_invalid_op_wd = reg_wdata[0];
assign err_code_invalid_cmd_we = addr_hit[42] & reg_we & ~wr_err;
assign err_code_invalid_cmd_wd = reg_wdata[1];
assign err_code_invalid_kmac_input_we = addr_hit[42] & reg_we & ~wr_err;
assign err_code_invalid_kmac_input_wd = reg_wdata[2];
assign err_code_invalid_kmac_data_we = addr_hit[42] & reg_we & ~wr_err;
assign err_code_invalid_kmac_data_wd = reg_wdata[3];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[4]: begin
reg_rdata_next[0] = cfgen_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = control_start_qs;
reg_rdata_next[6:4] = control_operation_qs;
reg_rdata_next[13:12] = control_dest_sel_qs;
end
addr_hit[6]: begin
reg_rdata_next[0] = sideload_clear_qs;
end
addr_hit[7]: begin
reg_rdata_next[15:0] = reseed_interval_qs;
end
addr_hit[8]: begin
reg_rdata_next[0] = sw_binding_en_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = sw_binding_0_qs;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = sw_binding_1_qs;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = sw_binding_2_qs;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = sw_binding_3_qs;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = salt_0_qs;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = salt_1_qs;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = salt_2_qs;
end
addr_hit[16]: begin
reg_rdata_next[31:0] = salt_3_qs;
end
addr_hit[17]: begin
reg_rdata_next[31:0] = key_version_qs;
end
addr_hit[18]: begin
reg_rdata_next[0] = max_creator_key_ver_en_qs;
end
addr_hit[19]: begin
reg_rdata_next[31:0] = max_creator_key_ver_qs;
end
addr_hit[20]: begin
reg_rdata_next[0] = max_owner_int_key_ver_en_qs;
end
addr_hit[21]: begin
reg_rdata_next[31:0] = max_owner_int_key_ver_qs;
end
addr_hit[22]: begin
reg_rdata_next[0] = max_owner_key_ver_en_qs;
end
addr_hit[23]: begin
reg_rdata_next[31:0] = max_owner_key_ver_qs;
end
addr_hit[24]: begin
reg_rdata_next[31:0] = sw_share0_output_0_qs;
end
addr_hit[25]: begin
reg_rdata_next[31:0] = sw_share0_output_1_qs;
end
addr_hit[26]: begin
reg_rdata_next[31:0] = sw_share0_output_2_qs;
end
addr_hit[27]: begin
reg_rdata_next[31:0] = sw_share0_output_3_qs;
end
addr_hit[28]: begin
reg_rdata_next[31:0] = sw_share0_output_4_qs;
end
addr_hit[29]: begin
reg_rdata_next[31:0] = sw_share0_output_5_qs;
end
addr_hit[30]: begin
reg_rdata_next[31:0] = sw_share0_output_6_qs;
end
addr_hit[31]: begin
reg_rdata_next[31:0] = sw_share0_output_7_qs;
end
addr_hit[32]: begin
reg_rdata_next[31:0] = sw_share1_output_0_qs;
end
addr_hit[33]: begin
reg_rdata_next[31:0] = sw_share1_output_1_qs;
end
addr_hit[34]: begin
reg_rdata_next[31:0] = sw_share1_output_2_qs;
end
addr_hit[35]: begin
reg_rdata_next[31:0] = sw_share1_output_3_qs;
end
addr_hit[36]: begin
reg_rdata_next[31:0] = sw_share1_output_4_qs;
end
addr_hit[37]: begin
reg_rdata_next[31:0] = sw_share1_output_5_qs;
end
addr_hit[38]: begin
reg_rdata_next[31:0] = sw_share1_output_6_qs;
end
addr_hit[39]: begin
reg_rdata_next[31:0] = sw_share1_output_7_qs;
end
addr_hit[40]: begin
reg_rdata_next[2:0] = working_state_qs;
end
addr_hit[41]: begin
reg_rdata_next[1:0] = op_status_qs;
end
addr_hit[42]: begin
reg_rdata_next[0] = err_code_invalid_op_qs;
reg_rdata_next[1] = err_code_invalid_cmd_qs;
reg_rdata_next[2] = err_code_invalid_kmac_input_qs;
reg_rdata_next[3] = err_code_invalid_kmac_data_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0)
endmodule